Duke Institute for Genome Science and Policy, Duke University, DUMC, Durham, NC, 27708, USA,
Chromosome Res. 2013 Dec;21(6-7):643-51. doi: 10.1007/s10577-013-9387-3.
Centromeres are sites of chromosomal spindle attachment during mitosis and meiosis. Centromeres are defined, in part, by a distinct chromatin landscape in which histone H3 is replaced by the conserved histone H3 variant, CENP-A. Sequences competent for centromere formation and function vary among organisms and are typically composed of repetitive DNA. It is unclear how such diverse genomic signals are integrated with the epigenetic mechanisms that govern CENP-A incorporation at a single locus on each chromosome. Recent work highlights the intriguing possibility that the transcriptional properties of centromeric core DNA contribute to centromere identity and maintenance through cell division. Moreover, core-derived noncoding RNAs (ncRNAs) have emerged as active participants in the regulation and control of centromere activity in plants and mammals. This paper reviews the transcriptional properties of eukaryotic centromeres and discusses the known roles of core-derived ncRNAs in chromatin integrity, kinetochore assembly, and centromere activity.
着丝粒是有丝分裂和减数分裂过程中纺锤体附着的染色体位点。着丝粒部分由独特的染色质景观定义,其中组蛋白 H3 被保守的组蛋白 H3 变体 CENP-A 取代。能够形成和发挥功能的着丝粒序列在不同的生物体中存在差异,通常由重复 DNA 组成。目前尚不清楚如何将这些不同的基因组信号与控制每条染色体上单个位点 CENP-A 掺入的表观遗传机制整合在一起。最近的工作强调了一个有趣的可能性,即着丝粒核心 DNA 的转录特性通过细胞分裂有助于着丝粒的身份和维持。此外,核心衍生的非编码 RNA(ncRNA)已成为植物和哺乳动物中调节和控制着丝粒活性的活跃参与者。本文综述了真核着丝粒的转录特性,并讨论了核心衍生的 ncRNA 在染色质完整性、动粒组装和着丝粒活性中的已知作用。