Suppr超能文献

突变分析揭示了复发性神经胶质瘤的起源和治疗驱动的进化。

Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma.

机构信息

Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.

Department ofPathology, University of California San Francisco, San Francisco, CA, USA.

出版信息

Science. 2014 Jan 10;343(6167):189-193. doi: 10.1126/science.1239947. Epub 2013 Dec 12.

Abstract

Tumor recurrence is a leading cause of cancer mortality. Therapies for recurrent disease may fail, at least in part, because the genomic alterations driving the growth of recurrences are distinct from those in the initial tumor. To explore this hypothesis, we sequenced the exomes of 23 initial low-grade gliomas and recurrent tumors resected from the same patients. In 43% of cases, at least half of the mutations in the initial tumor were undetected at recurrence, including driver mutations in TP53, ATRX, SMARCA4, and BRAF; this suggests that recurrent tumors are often seeded by cells derived from the initial tumor at a very early stage of their evolution. Notably, tumors from 6 of 10 patients treated with the chemotherapeutic drug temozolomide (TMZ) followed an alternative evolutionary path to high-grade glioma. At recurrence, these tumors were hypermutated and harbored driver mutations in the RB (retinoblastoma) and Akt-mTOR (mammalian target of rapamycin) pathways that bore the signature of TMZ-induced mutagenesis.

摘要

肿瘤复发是癌症死亡的主要原因。针对复发性疾病的治疗可能会失败,至少部分原因是驱动复发生长的基因组改变与初始肿瘤中的改变不同。为了探索这一假设,我们对 23 名接受相同治疗的低级别胶质瘤患者的初始肿瘤和复发肿瘤进行了外显子组测序。在 43%的病例中,至少有一半的初始肿瘤中的突变在复发时未被检测到,包括 TP53、ATRX、SMARCA4 和 BRAF 的驱动突变;这表明复发肿瘤通常是由初始肿瘤在其进化的早期阶段衍生的细胞播种的。值得注意的是,接受化疗药物替莫唑胺(TMZ)治疗的 10 名患者中的 6 名的肿瘤则沿着另一种进化途径发展为高级别胶质瘤。在复发时,这些肿瘤发生了超突变,并携带 RB(视网膜母细胞瘤)和 Akt-mTOR(哺乳动物雷帕霉素靶蛋白)通路的驱动突变,这些突变具有 TMZ 诱导的突变特征。

相似文献

1
Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma.
Science. 2014 Jan 10;343(6167):189-193. doi: 10.1126/science.1239947. Epub 2013 Dec 12.
2
The evolving genomic landscape of recurrent gliomas.
World Neurosurg. 2015 May;83(5):722-3. doi: 10.1016/j.wneu.2015.03.004. Epub 2015 Mar 10.
4
Evolution of DNA repair defects during malignant progression of low-grade gliomas after temozolomide treatment.
Acta Neuropathol. 2015 Apr;129(4):597-607. doi: 10.1007/s00401-015-1403-6. Epub 2015 Feb 28.
5
Rechallenge with temozolomide in patients with recurrent gliomas.
J Neurol. 2009 May;256(5):734-41. doi: 10.1007/s00415-009-5006-9. Epub 2009 Feb 25.
7
Spatiotemporal Evolution of the Primary Glioblastoma Genome.
Cancer Cell. 2015 Sep 14;28(3):318-28. doi: 10.1016/j.ccell.2015.07.013.
9
The Inhibition of microRNA-128 on IGF-1-Activating mTOR Signaling Involves in Temozolomide-Induced Glioma Cell Apoptotic Death.
PLoS One. 2016 Nov 28;11(11):e0167096. doi: 10.1371/journal.pone.0167096. eCollection 2016.
10
Rechallenge with temozolomide in recurrent glioma.
Neurol Sci. 2011 Nov;32 Suppl 2:S247-9. doi: 10.1007/s10072-011-0798-7.

引用本文的文献

3
Proteogenomic Insights Into Glioblastoma Evolution: Neuronal Reprogramming and Therapeutic Vulnerabilities.
Brain Tumor Res Treat. 2025 Jul;13(3):81-86. doi: 10.14791/btrt.2025.0018.
4
Continuous-time random walk and fractional order calculus models histogram analysis of glioma biomarkers, including , , , and , on differentiation.
Quant Imaging Med Surg. 2025 Jul 1;15(7):6118-6136. doi: 10.21037/qims-2024-2725. Epub 2025 Jun 30.
6
Glioblastoma at the crossroads: current understanding and future therapeutic horizons.
Signal Transduct Target Ther. 2025 Jul 9;10(1):213. doi: 10.1038/s41392-025-02299-4.
7
Immunotherapy for High-Grade Gliomas.
Cancers (Basel). 2025 May 31;17(11):1849. doi: 10.3390/cancers17111849.
8
R-2-hydroxyglutarate-mediated inhibition of KDM4A compromises telomere integrity.
Nucleic Acids Res. 2025 Jun 6;53(11). doi: 10.1093/nar/gkaf512.
9
DNA repair and the contribution to chemotherapy resistance.
Genome Med. 2025 May 26;17(1):62. doi: 10.1186/s13073-025-01488-8.

本文引用的文献

1
An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells.
Science. 2013 May 3;340(6132):626-30. doi: 10.1126/science.1236062. Epub 2013 Apr 4.
2
Evolution and impact of subclonal mutations in chronic lymphocytic leukemia.
Cell. 2013 Feb 14;152(4):714-26. doi: 10.1016/j.cell.2013.01.019.
3
Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics.
Proc Natl Acad Sci U S A. 2013 Mar 5;110(10):4009-14. doi: 10.1073/pnas.1219747110. Epub 2013 Feb 14.
4
Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples.
Nat Biotechnol. 2013 Mar;31(3):213-9. doi: 10.1038/nbt.2514. Epub 2013 Feb 10.
5
Frequent ATRX, CIC, FUBP1 and IDH1 mutations refine the classification of malignant gliomas.
Oncotarget. 2012 Jul;3(7):709-22. doi: 10.18632/oncotarget.588.
6
The life history of 21 breast cancers.
Cell. 2012 May 25;149(5):994-1007. doi: 10.1016/j.cell.2012.04.023. Epub 2012 May 17.
7
Intratumor heterogeneity and branched evolution revealed by multiregion sequencing.
N Engl J Med. 2012 Mar 8;366(10):883-892. doi: 10.1056/NEJMoa1113205.
8
Clonal selection drives genetic divergence of metastatic medulloblastoma.
Nature. 2012 Feb 15;482(7386):529-33. doi: 10.1038/nature10825.
10
Clonal evolution in cancer.
Nature. 2012 Jan 18;481(7381):306-13. doi: 10.1038/nature10762.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验