Suppr超能文献

涡旋流中细菌的聚集和生物膜的形成。

Bacterial aggregation and biofilm formation in a vortical flow.

机构信息

Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.

出版信息

Biomicrofluidics. 2012 Dec 12;6(4):44114. doi: 10.1063/1.4771407. eCollection 2012.

Abstract

Bacterial aggregation and patchiness play an important role in a variety of ecological processes such as competition, adaptation, epidemics, and succession. Here, we demonstrate that hydrodynamics of their environment can lead to their aggregation. This is specially important since microbial habitats are rarely at rest (e.g., ocean, blood stream, flow in porous media, and flow through membrane filtration processes). In order to study the dynamics of bacterial collection in a vortical flow, we utilize a microfluidic system to mimic some of the important microbial conditions at ecologically relevant spatiotemporal scales. We experimentally demonstrate the formation of "ring"-shaped bacterial collection patterns and subsequently the formation of biofilm streamers in a microfluidic system. Acoustic streaming of a microbubble is used to generate a vortical flow in a microchannel. Due to bacteria's finite-size, the microorganisms are directed to closed streamlines and trapped in the vortical flow. The collection of bacteria in the vortices occurs in a matter of seconds, and unexpectedly, triggers the formation of biofilm streamers within minutes. Swimming bacteria have a competitive advantage to respond to their environmental conditions. In order to investigate the role of bacterial motility on the rate of collection, two strains of Escherichia coli bacteria with different motilities are used. We show that the bacterial collection in a vortical flow is strongly pronounced for high motile bacteria.

摘要

细菌聚集和斑块在多种生态过程中起着重要作用,如竞争、适应、流行和演替。在这里,我们证明了它们环境的流体动力学可以导致它们聚集。这是特别重要的,因为微生物栖息地很少处于静止状态(例如,海洋、血流、多孔介质中的流动和通过膜过滤过程的流动)。为了研究涡流中细菌收集的动力学,我们利用微流控系统在生态相关的时空尺度上模拟一些重要的微生物条件。我们实验证明了在微流控系统中形成“环形”细菌收集图案,随后形成生物膜流。微泡的声流用于在微通道中产生涡流。由于细菌的有限尺寸,微生物被引导到封闭的流线中并被困在涡流中。细菌在几秒钟内收集在涡流中,出乎意料的是,几分钟内引发了生物膜流的形成。游动细菌具有响应环境条件的竞争优势。为了研究细菌运动性对收集速度的作用,我们使用了两种具有不同运动性的大肠杆菌细菌菌株。我们表明,在高速运动的细菌中,涡流中的细菌收集非常明显。

相似文献

1
Bacterial aggregation and biofilm formation in a vortical flow.
Biomicrofluidics. 2012 Dec 12;6(4):44114. doi: 10.1063/1.4771407. eCollection 2012.
2
Emergence of a limit cycle for swimming microorganisms in a vortical flow of a viscoelastic fluid.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 May;85(5 Pt 2):056309. doi: 10.1103/PhysRevE.85.056309. Epub 2012 May 22.
3
Secondary flow as a mechanism for the formation of biofilm streamers.
Biophys J. 2011 Mar 16;100(6):1392-9. doi: 10.1016/j.bpj.2011.01.065.
4
Rapid expulsion of microswimmers by a vortical flow.
Nat Commun. 2016 Mar 23;7:11114. doi: 10.1038/ncomms11114.
5
Laminar flow around corners triggers the formation of biofilm streamers.
J R Soc Interface. 2010 Sep 6;7(50):1293-9. doi: 10.1098/rsif.2010.0096. Epub 2010 Mar 31.
6
A web of streamers: biofilm formation in a porous microfluidic device.
Lab Chip. 2012 Dec 21;12(24):5133-7. doi: 10.1039/c2lc40815e.
7
Bacterial scattering in microfluidic crystal flows reveals giant active Taylor-Aris dispersion.
Proc Natl Acad Sci U S A. 2019 Jun 4;116(23):11119-11124. doi: 10.1073/pnas.1819613116. Epub 2019 May 16.
8
Filaments in curved streamlines: Rapid formation of biofilm streamers.
New J Phys. 2014 Jun 26;16(6):065024. doi: 10.1088/1367-2630/16/6/065024.
9
Formation of bacterial streamers during filtration in microfluidic systems.
Biofouling. 2012;28(6):551-62. doi: 10.1080/08927014.2012.695351.
10
Trait-specific dispersal of bacteria in heterogeneous porous environments: from pore to porous medium scale.
J R Soc Interface. 2020 Mar;17(164):20200046. doi: 10.1098/rsif.2020.0046. Epub 2020 Mar 25.

引用本文的文献

1
A computational approach to simulating a three-sphere swimmer in a viscoelastic fluid modelled via the Giesekus constitutive law.
Philos Trans A Math Phys Eng Sci. 2025 Sep 11;383(2304):20240268. doi: 10.1098/rsta.2024.0268.
2
The interplay between bacterial biofilms, encrustation, and wall shear stress in ureteral stents: a review across scales.
Front Urol. 2024 Jan 16;3:1335414. doi: 10.3389/fruro.2023.1335414. eCollection 2023.
3
Enhanced sperm isolation via bulk acoustic waves for high-throughput motility screening.
Sci Rep. 2024 Nov 4;14(1):26717. doi: 10.1038/s41598-024-78536-7.
4
Antagonistic Effects of 090104 on Respiratory Pathogens.
Microorganisms. 2024 Jun 26;12(7):1295. doi: 10.3390/microorganisms12071295.
6
Mechanobiology as a tool for addressing the genotype-to-phenotype problem in microbiology.
Biophys Rev (Melville). 2023 May 12;4(2):021304. doi: 10.1063/5.0142121. eCollection 2023 Jun.
7
Relationship between the Chromosome Structural Dynamics and Gene Expression-A Chicken and Egg Dilemma?
Microorganisms. 2022 Apr 20;10(5):846. doi: 10.3390/microorganisms10050846.
8
A microfluidic platform for characterizing the structure and rheology of biofilm streamers.
Soft Matter. 2022 May 25;18(20):3878-3890. doi: 10.1039/d2sm00258b.
9
Acoustic tweezing of microparticles in microchannels with sinusoidal cross sections.
Sci Rep. 2021 Sep 9;11(1):17902. doi: 10.1038/s41598-021-97132-7.
10
Microfluidic devices for studying bacterial taxis, drug testing and biofilm formation.
Microb Biotechnol. 2022 Feb;15(2):395-414. doi: 10.1111/1751-7915.13775. Epub 2021 Mar 1.

本文引用的文献

2
Highly potent bactericidal activity of porous metal-organic frameworks.
Adv Healthc Mater. 2012 Mar;1(2):225-38. doi: 10.1002/adhm.201100043.
3
A web of streamers: biofilm formation in a porous microfluidic device.
Lab Chip. 2012 Dec 21;12(24):5133-7. doi: 10.1039/c2lc40815e.
4
Emergence of a limit cycle for swimming microorganisms in a vortical flow of a viscoelastic fluid.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 May;85(5 Pt 2):056309. doi: 10.1103/PhysRevE.85.056309. Epub 2012 May 22.
5
Efficient manipulation of microparticles in bubble streaming flows.
Biomicrofluidics. 2012 Mar;6(1):12801-1280111. doi: 10.1063/1.3654949. Epub 2012 Mar 15.
6
Rapid formation of size-controlled three dimensional hetero-cell aggregates using micro-rotation flow for spheroid study.
Biomicrofluidics. 2011 Sep;5(3):34105-3410515. doi: 10.1063/1.3609969. Epub 2011 Jul 25.
7
High-throughput size-based rare cell enrichment using microscale vortices.
Biomicrofluidics. 2011 Jun;5(2):22206. doi: 10.1063/1.3576780. Epub 2011 Jun 29.
9
Gyrotaxis in a steady vortical flow.
Phys Rev Lett. 2011 Jun 10;106(23):238102. doi: 10.1103/PhysRevLett.106.238102. Epub 2011 Jun 6.
10
Reverse and flick: Hybrid locomotion in bacteria.
Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):2635-6. doi: 10.1073/pnas.1019199108. Epub 2011 Feb 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验