Suppr超能文献

微流控技术拓展了微生物生态学的边界。

Microfluidics expanding the frontiers of microbial ecology.

机构信息

Ralph M. Parsons Laboratory, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; email:

出版信息

Annu Rev Biophys. 2014;43:65-91. doi: 10.1146/annurev-biophys-051013-022916.

Abstract

Microfluidics has significantly contributed to the expansion of the frontiers of microbial ecology over the past decade by allowing researchers to observe the behaviors of microbes in highly controlled microenvironments, across scales from a single cell to mixed communities. Spatially and temporally varying distributions of organisms and chemical cues that mimic natural microbial habitats can now be established by exploiting physics at the micrometer scale and by incorporating structures with specific geometries and materials. In this article, we review applications of microfluidics that have resulted in insightful discoveries on fundamental aspects of microbial life, ranging from growth and sensing to cell-cell interactions and population dynamics. We anticipate that this flexible multidisciplinary technology will continue to facilitate discoveries regarding the ecology of microorganisms and help uncover strategies to control microbial processes such as biofilm formation and antibiotic resistance.

摘要

微流控技术在过去十年中极大地推动了微生物生态学的发展,使研究人员能够在高度可控的微环境中观察微生物的行为,其范围涵盖从单细胞到混合群落的多个尺度。通过利用微米尺度的物理学原理并结合具有特定几何形状和材料的结构,现在可以建立具有时空变化的生物分布和模拟自然微生物栖息地的化学信号。在本文中,我们回顾了微流控技术的应用,这些应用在微生物生命的基本方面取得了有见地的发现,从生长和感应到细胞间相互作用和种群动态。我们预计,这种灵活的多学科技术将继续促进对微生物生态学的发现,并有助于揭示控制微生物过程(如生物膜形成和抗生素耐药性)的策略。

相似文献

1
Microfluidics expanding the frontiers of microbial ecology.
Annu Rev Biophys. 2014;43:65-91. doi: 10.1146/annurev-biophys-051013-022916.
2
Microfluidic approaches in microbial ecology.
Lab Chip. 2024 Feb 27;24(5):1394-1418. doi: 10.1039/d3lc00784g.
3
Live from under the lens: exploring microbial motility with dynamic imaging and microfluidics.
Nat Rev Microbiol. 2015 Dec;13(12):761-75. doi: 10.1038/nrmicro3567.
4
Microfluidics for bacterial chemotaxis.
Integr Biol (Camb). 2010 Nov;2(11-12):604-29. doi: 10.1039/c0ib00049c. Epub 2010 Oct 21.
5
A microfluidics-based in situ chemotaxis assay to study the behaviour of aquatic microbial communities.
Nat Microbiol. 2017 Oct;2(10):1344-1349. doi: 10.1038/s41564-017-0010-9. Epub 2017 Aug 28.
6
Chemical interactions between organisms in microbial communities.
Contrib Microbiol. 2009;16:1-17. doi: 10.1159/000219369. Epub 2009 Jun 2.
7
Chemotactic response of marine micro-organisms to micro-scale nutrient layers.
J Vis Exp. 2007(4):203. doi: 10.3791/203. Epub 2007 May 28.
8
Going local: technologies for exploring bacterial microenvironments.
Nat Rev Microbiol. 2013 May;11(5):337-48. doi: 10.1038/nrmicro3010.
10

引用本文的文献

1
Deciphering microbial spatial organization: insights from synthetic and engineered communities.
ISME Commun. 2025 Jun 27;5(1):ycaf107. doi: 10.1093/ismeco/ycaf107. eCollection 2025 Jan.
2
Microfluidic and lab-on-a-chip devices for detection and diagnosis of periprosthetic joint infections.
Biomed Microdevices. 2025 Aug 14;27(3):38. doi: 10.1007/s10544-025-00768-9.
3
Dynamics of Spatial Organization of Bacterial Communities in a Tunable Flow Gut Microbiome-on-a-Chip.
Small. 2025 May;21(20):e2410258. doi: 10.1002/smll.202410258. Epub 2025 Apr 9.
4
Where the microbes aren't.
FEMS Microbiol Rev. 2025 Jan 14;49. doi: 10.1093/femsre/fuae034.
5
Microbes in porous environments: from active interactions to emergent feedback.
Biophys Rev. 2024 Apr 19;16(2):173-188. doi: 10.1007/s12551-024-01185-7. eCollection 2024 Apr.
6
Mechanics limits ecological diversity and promotes heterogeneity in confined bacterial communities.
Proc Natl Acad Sci U S A. 2024 May 14;121(20):e2322321121. doi: 10.1073/pnas.2322321121. Epub 2024 May 10.
7
Multiscale Porosity Microfluidics to Study Bacterial Transport in Heterogeneous Chemical Landscapes.
Adv Sci (Weinh). 2024 May;11(20):e2310121. doi: 10.1002/advs.202310121. Epub 2024 Mar 6.
8
Breast implant surface topography triggers a chronic-like inflammatory response.
Life Sci Alliance. 2024 Feb 21;7(5). doi: 10.26508/lsa.202302132. Print 2024 May.
9
Microfluidic approaches in microbial ecology.
Lab Chip. 2024 Feb 27;24(5):1394-1418. doi: 10.1039/d3lc00784g.
10
Automated high-content image-based characterization of microorganism behavioral diversity and distribution.
Comput Struct Biotechnol J. 2023 Nov 2;21:5640-5649. doi: 10.1016/j.csbj.2023.10.055. eCollection 2023.

本文引用的文献

1
Bacterial aggregation and biofilm formation in a vortical flow.
Biomicrofluidics. 2012 Dec 12;6(4):44114. doi: 10.1063/1.4771407. eCollection 2012.
2
A microfluidic platform for real-time and in situ monitoring of virus infection process.
Biomicrofluidics. 2012 Sep 27;6(3):34122. doi: 10.1063/1.4756793. eCollection 2012.
3
Non-Newtonian viscosity of Escherichia coli suspensions.
Phys Rev Lett. 2013 Jun 28;110(26):268103. doi: 10.1103/PhysRevLett.110.268103. Epub 2013 Jun 26.
4
Microfluidic-driven viral infection on cell cultures: Theoretical and experimental study.
Biomicrofluidics. 2012 Jun 4;6(2):24127-2412712. doi: 10.1063/1.4723853. Print 2012 Jun.
5
Going local: technologies for exploring bacterial microenvironments.
Nat Rev Microbiol. 2013 May;11(5):337-48. doi: 10.1038/nrmicro3010.
6
Light control of the flow of phototactic microswimmer suspensions.
Phys Rev Lett. 2013 Mar 29;110(13):138106. doi: 10.1103/PhysRevLett.110.138106. Epub 2013 Mar 28.
7
Biofilm streamers cause catastrophic disruption of flow with consequences for environmental and medical systems.
Proc Natl Acad Sci U S A. 2013 Mar 12;110(11):4345-50. doi: 10.1073/pnas.1300321110. Epub 2013 Feb 11.
8
Microfluidic chemostat for measuring single cell dynamics in bacteria.
Lab Chip. 2013 Mar 7;13(5):947-54. doi: 10.1039/c2lc41196b. Epub 2013 Jan 18.
9
Ciliary contact interactions dominate surface scattering of swimming eukaryotes.
Proc Natl Acad Sci U S A. 2013 Jan 22;110(4):1187-92. doi: 10.1073/pnas.1210548110. Epub 2013 Jan 7.
10
Rapid antibiotic susceptibility testing by tracking single cell growth in a microfluidic agarose channel system.
Lab Chip. 2013 Jan 21;13(2):280-7. doi: 10.1039/c2lc41055a. Epub 2012 Nov 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验