Ralph M. Parsons Laboratory, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; email:
Annu Rev Biophys. 2014;43:65-91. doi: 10.1146/annurev-biophys-051013-022916.
Microfluidics has significantly contributed to the expansion of the frontiers of microbial ecology over the past decade by allowing researchers to observe the behaviors of microbes in highly controlled microenvironments, across scales from a single cell to mixed communities. Spatially and temporally varying distributions of organisms and chemical cues that mimic natural microbial habitats can now be established by exploiting physics at the micrometer scale and by incorporating structures with specific geometries and materials. In this article, we review applications of microfluidics that have resulted in insightful discoveries on fundamental aspects of microbial life, ranging from growth and sensing to cell-cell interactions and population dynamics. We anticipate that this flexible multidisciplinary technology will continue to facilitate discoveries regarding the ecology of microorganisms and help uncover strategies to control microbial processes such as biofilm formation and antibiotic resistance.
微流控技术在过去十年中极大地推动了微生物生态学的发展,使研究人员能够在高度可控的微环境中观察微生物的行为,其范围涵盖从单细胞到混合群落的多个尺度。通过利用微米尺度的物理学原理并结合具有特定几何形状和材料的结构,现在可以建立具有时空变化的生物分布和模拟自然微生物栖息地的化学信号。在本文中,我们回顾了微流控技术的应用,这些应用在微生物生命的基本方面取得了有见地的发现,从生长和感应到细胞间相互作用和种群动态。我们预计,这种灵活的多学科技术将继续促进对微生物生态学的发现,并有助于揭示控制微生物过程(如生物膜形成和抗生素耐药性)的策略。