Bountris Panagiotis, Haritou Maria, Pouliakis Abraham, Margari Niki, Kyrgiou Maria, Spathis Aris, Pappas Asimakis, Panayiotides Ioannis, Paraskevaidis Evangelos A, Karakitsos Petros, Koutsouris Dimitrios-Dionyssios
Biomedical Engineering Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, Iroon Politechniou 9, 15773 Zografou Campus, Athens, Greece.
Institute of Communication and Computer Systems, National Technical University of Athens, Iroon Politechniou 9, 15773 Zografou Campus, Athens, Greece.
Biomed Res Int. 2014;2014:341483. doi: 10.1155/2014/341483. Epub 2014 Apr 9.
Nowadays, there are molecular biology techniques providing information related to cervical cancer and its cause: the human Papillomavirus (HPV), including DNA microarrays identifying HPV subtypes, mRNA techniques such as nucleic acid based amplification or flow cytometry identifying E6/E7 oncogenes, and immunocytochemistry techniques such as overexpression of p16. Each one of these techniques has its own performance, limitations and advantages, thus a combinatorial approach via computational intelligence methods could exploit the benefits of each method and produce more accurate results. In this article we propose a clinical decision support system (CDSS), composed by artificial neural networks, intelligently combining the results of classic and ancillary techniques for diagnostic accuracy improvement. We evaluated this method on 740 cases with complete series of cytological assessment, molecular tests, and colposcopy examination. The CDSS demonstrated high sensitivity (89.4%), high specificity (97.1%), high positive predictive value (89.4%), and high negative predictive value (97.1%), for detecting cervical intraepithelial neoplasia grade 2 or worse (CIN2+). In comparison to the tests involved in this study and their combinations, the CDSS produced the most balanced results in terms of sensitivity, specificity, PPV, and NPV. The proposed system may reduce the referral rate for colposcopy and guide personalised management and therapeutic interventions.
如今,有多种分子生物学技术可提供与宫颈癌及其病因——人乳头瘤病毒(HPV)相关的信息,包括用于鉴定HPV亚型的DNA微阵列、用于鉴定E6/E7致癌基因的基于核酸扩增或流式细胞术的mRNA技术,以及用于检测p16过表达的免疫细胞化学技术。这些技术中的每一种都有其自身的性能、局限性和优势,因此通过计算智能方法的组合方法可以利用每种方法的优点并产生更准确的结果。在本文中,我们提出了一种由人工神经网络组成的临床决策支持系统(CDSS),它能智能地结合经典技术和辅助技术的结果以提高诊断准确性。我们在740例具有完整细胞学评估、分子检测和阴道镜检查系列的病例上评估了该方法。该CDSS在检测2级或更高级别的宫颈上皮内瘤变(CIN2+)时表现出高灵敏度(89.4%)、高特异性(97.1%)、高阳性预测值(89.4%)和高阴性预测值(97.1%)。与本研究中涉及的检测及其组合相比,CDSS在灵敏度、特异性、阳性预测值和阴性预测值方面产生了最平衡的结果。所提出的系统可能会降低阴道镜检查的转诊率,并指导个性化管理和治疗干预。