Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA.
Nat Neurosci. 2014 Jul;17(7):962-70. doi: 10.1038/nn.3741. Epub 2014 Jun 8.
We discovered a bimodal behavior in the genetically tractable organism Drosophila melanogaster that allowed us to directly probe the neural mechanisms of an action selection process. When confronted by a predator-mimicking looming stimulus, a fly responds with either a long-duration escape behavior sequence that initiates stable flight or a distinct, short-duration sequence that sacrifices flight stability for speed. Intracellular recording of the descending giant fiber (GF) interneuron during head-fixed escape revealed that GF spike timing relative to parallel circuits for escape actions determined which of the two behavioral responses was elicited. The process was well described by a simple model in which the GF circuit has a higher activation threshold than the parallel circuits, but can override ongoing behavior to force a short takeoff. Our findings suggest a neural mechanism for action selection in which relative activation timing of parallel circuits creates the appropriate motor output.
我们在遗传上易于操作的生物体果蝇中发现了一种双峰行为,这使我们能够直接探究动作选择过程的神经机制。当面临类似于捕食者的逼近刺激时,苍蝇会做出两种反应之一:一种是持续时间较长的逃避行为序列,以启动稳定的飞行;另一种是截然不同的、持续时间较短的行为序列,以牺牲飞行稳定性来换取速度。在头部固定的逃避过程中记录下下行的巨大纤维 (GF) 中间神经元的细胞内记录表明,GF 尖峰相对于逃避动作的平行电路的时间决定了会引发哪种行为反应。一个简单的模型很好地描述了这个过程,该模型认为 GF 电路的激活阈值高于平行电路,但可以覆盖正在进行的行为,强制进行短暂起飞。我们的发现表明了一种用于动作选择的神经机制,其中平行电路的相对激活时间产生适当的运动输出。