Dombrovski Mark, Zang Yixin, Frighetto Giovanni, Vaccari Andrea, Jang HyoJong, Mirshahidi Parmis S, Xie Fangming, Sanfilippo Piero, Hina Bryce W, Rehan Aadil, Hussein Roni H, Mirshahidi Pegah S, Lee Catherine, Morris Aileen, Frye Mark A, von Reyn Catherine R, Kurmangaliyev Yerbol Z, Card Gwyneth M, Zipursky S Lawrence
Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
Department of Neuroscience, Howard Hughes Medical Institute, The Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
Nature. 2025 Jun 4. doi: 10.1038/s41586-025-09037-4.
How does the brain convert visual input into specific motor actions? In Drosophila, visual projection neurons (VPNs) perform this visuomotor transformation by converting retinal positional information into synapse number in the brain. The molecular basis of this phenomenon remains unknown. We addressed this issue in LPLC2 (ref. ), a VPN type that detects looming motion and preferentially drives escape behaviour to stimuli approaching from the dorsal visual field with progressively weaker responses ventrally. This correlates with a dorsoventral gradient of synaptic inputs into and outputs from LPLC2. Here we report that LPLC2 neurons sampling different regions of visual space exhibit graded expression of cell recognition molecules matching these synaptic gradients. Dpr13 shapes LPLC2 outputs by binding DIP-ε in premotor descending neurons mediating escape. Beat-VI shapes LPLC2 inputs by binding Side-II in upstream motion-detecting neurons. Gain-of-function and loss-of-function experiments show that these molecular gradients act instructively to determine synapse number. These patterns, in turn, fine-tune the perception of the stimulus and drive the behavioural response. Similar transcriptomic variation within neuronal types is observed in the vertebrate brain and may shape synapse number via gradients of cell recognition molecules acting through both genetically hard-wired programs and experience.
大脑如何将视觉输入转化为特定的运动动作?在果蝇中,视觉投射神经元(VPNs)通过将视网膜位置信息转化为大脑中的突触数量来执行这种视觉运动转换。这种现象的分子基础仍然未知。我们在LPLC2(参考文献)中解决了这个问题,LPLC2是一种VPN类型,可检测逼近运动,并优先驱动对从背侧视野接近的刺激的逃避行为,而对腹侧刺激的反应逐渐减弱。这与LPLC2的突触输入和输出的背腹梯度相关。在这里,我们报告说,对视觉空间不同区域进行采样的LPLC2神经元表现出与这些突触梯度相匹配的细胞识别分子的分级表达。Dpr13通过在介导逃避的运动前下行神经元中结合DIP-ε来塑造LPLC2的输出。Beat-VI通过在上游运动检测神经元中结合Side-II来塑造LPLC2的输入。功能获得和功能丧失实验表明,这些分子梯度具有指导性作用,可决定突触数量。反过来,这些模式会微调对刺激的感知并驱动行为反应。在脊椎动物大脑中也观察到神经元类型内类似的转录组变异,并且可能通过细胞识别分子的梯度,通过遗传硬连线程序和经验来塑造突触数量。