Suppr超能文献

针对结核分枝杆菌的细胞自主效应机制。

Cell-autonomous effector mechanisms against mycobacterium tuberculosis.

作者信息

MacMicking John D

机构信息

Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06510.

出版信息

Cold Spring Harb Perspect Med. 2014 Jul 31;4(10):a018507. doi: 10.1101/cshperspect.a018507.

Abstract

Few pathogens run the gauntlet of sterilizing immunity like Mycobacterium tuberculosis (Mtb). This organism infects mononuclear phagocytes and is also ingested by neutrophils, both of which possess an arsenal of cell-intrinsic effector mechanisms capable of eliminating it. Here Mtb encounters acid, oxidants, nitrosylating agents, and redox congeners, often exuberantly delivered under low oxygen tension. Further pressure is applied by withholding divalent Fe²⁺, Mn²⁺, Cu²⁺, and Zn²⁺, as well as by metabolic privation in the form of carbon needed for anaplerosis and aromatic amino acids for growth. Finally, host E3 ligases ubiquinate, cationic peptides disrupt, and lysosomal enzymes digest Mtb as part of the autophagic response to this particular pathogen. It is a testament to the evolutionary fitness of Mtb that sterilization is rarely complete, although sufficient to ensure most people infected with this airborne bacterium remain disease-free.

摘要

很少有病原体能像结核分枝杆菌(Mtb)那样经受住杀菌免疫的重重考验。这种病原体感染单核吞噬细胞,也会被中性粒细胞吞噬,而这两种细胞都拥有一系列能够消灭它的细胞内固有效应机制。在这里,Mtb会遇到酸、氧化剂、亚硝化剂和氧化还原同系物,这些物质通常在低氧张力下大量释放。通过扣留二价铁离子(Fe²⁺)、锰离子(Mn²⁺)、铜离子(Cu²⁺)和锌离子(Zn²⁺),以及通过以回补反应所需的碳和生长所需的芳香族氨基酸形式进行代谢剥夺,进一步施加压力。最后,宿主E3连接酶进行泛素化,阳离子肽进行破坏,溶酶体酶将Mtb消化,作为对这种特定病原体自噬反应的一部分。尽管足以确保大多数感染这种空气传播细菌的人保持无病状态,但杀菌很少能完全彻底,这证明了Mtb的进化适应性。

相似文献

1
Cell-autonomous effector mechanisms against mycobacterium tuberculosis.
Cold Spring Harb Perspect Med. 2014 Jul 31;4(10):a018507. doi: 10.1101/cshperspect.a018507.
2
Immunoevasion and immunosuppression of the macrophage by Mycobacterium tuberculosis.
Immunol Rev. 2015 Mar;264(1):220-32. doi: 10.1111/imr.12268.
4
Mycobacterium tuberculosis nucleoside diphosphate kinase inactivates small GTPases leading to evasion of innate immunity.
PLoS Pathog. 2013;9(7):e1003499. doi: 10.1371/journal.ppat.1003499. Epub 2013 Jul 18.
5
Janus-faced liposomes enhance antimicrobial innate immune response in Mycobacterium tuberculosis infection.
Proc Natl Acad Sci U S A. 2012 May 22;109(21):E1360-8. doi: 10.1073/pnas.1200484109. Epub 2012 Apr 25.
6
Human macrophage host defense against Mycobacterium tuberculosis.
Curr Opin Immunol. 2008 Aug;20(4):371-6. doi: 10.1016/j.coi.2008.05.014. Epub 2008 Jul 21.
7
Insights into battles between Mycobacterium tuberculosis and macrophages.
Protein Cell. 2014 Oct;5(10):728-36. doi: 10.1007/s13238-014-0077-5. Epub 2014 Jun 18.
8
Sensing of Mycobacterium tuberculosis and consequences to both host and bacillus.
Immunol Rev. 2015 Mar;264(1):204-19. doi: 10.1111/imr.12263.
10
Tuberculosis and the art of macrophage manipulation.
Pathog Dis. 2018 Jun 1;76(4). doi: 10.1093/femspd/fty037.

引用本文的文献

2
Oxidative stress drives potent bactericidal activity of pyrazinamide against .
bioRxiv. 2024 Dec 18:2024.12.17.628853. doi: 10.1101/2024.12.17.628853.
3
Structural basis of antimicrobial membrane coat assembly by human GBP1.
Nat Struct Mol Biol. 2025 Jan;32(1):172-184. doi: 10.1038/s41594-024-01400-9. Epub 2024 Oct 11.
5
PLSCR1 is a cell-autonomous defence factor against SARS-CoV-2 infection.
Nature. 2023 Jul;619(7971):819-827. doi: 10.1038/s41586-023-06322-y. Epub 2023 Jul 12.
6
HIV/Mtb Co-Infection: From the Amplification of Disease Pathogenesis to an "Emerging Syndemic".
Microorganisms. 2023 Mar 27;11(4):853. doi: 10.3390/microorganisms11040853.
7
Uptake-independent killing of macrophages by extracellular Mycobacterium tuberculosis aggregates.
EMBO J. 2023 May 2;42(9):e113490. doi: 10.15252/embj.2023113490. Epub 2023 Mar 15.
8
Phenotypic adaptation of to host-associated stressors that induce persister formation.
Front Cell Infect Microbiol. 2022 Sep 27;12:956607. doi: 10.3389/fcimb.2022.956607. eCollection 2022.

本文引用的文献

1
Association between genetic variants in the IRGM gene and tuberculosis in a Korean population.
Infection. 2014 Aug;42(4):655-60. doi: 10.1007/s15010-014-0604-6. Epub 2014 Mar 5.
2
Identification of host-targeted small molecules that restrict intracellular Mycobacterium tuberculosis growth.
PLoS Pathog. 2014 Feb 20;10(2):e1003946. doi: 10.1371/journal.ppat.1003946. eCollection 2014 Feb.
3
Identification of an immune-regulated phagosomal Rab cascade in macrophages.
J Cell Sci. 2014 May 1;127(Pt 9):2071-82. doi: 10.1242/jcs.144923. Epub 2014 Feb 25.
4
Host-directed therapies against tuberculosis.
Lancet Respir Med. 2014 Feb;2(2):85-7. doi: 10.1016/S2213-2600(13)70295-9. Epub 2014 Jan 9.
5
iNKT cell production of GM-CSF controls Mycobacterium tuberculosis.
PLoS Pathog. 2014 Jan;10(1):e1003805. doi: 10.1371/journal.ppat.1003805. Epub 2014 Jan 2.
7
Mycobacteria manipulate macrophage recruitment through coordinated use of membrane lipids.
Nature. 2014 Jan 9;505(7482):218-22. doi: 10.1038/nature12799. Epub 2013 Dec 15.
8
Tryptophan biosynthesis protects mycobacteria from CD4 T-cell-mediated killing.
Cell. 2013 Dec 5;155(6):1296-308. doi: 10.1016/j.cell.2013.10.045.
9
Host-directed therapeutics for tuberculosis: can we harness the host?
Microbiol Mol Biol Rev. 2013 Dec;77(4):608-27. doi: 10.1128/MMBR.00032-13.
10
Human gene variants linked to enhanced NLRP3 activity limit intramacrophage growth of Mycobacterium tuberculosis.
J Infect Dis. 2014 Mar 1;209(5):749-53. doi: 10.1093/infdis/jit572. Epub 2013 Oct 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验