Suppr超能文献

利用药物反应数据识别分子效应器,并利用分子“组学”数据识别癌症中的候选药物。

Using drug response data to identify molecular effectors, and molecular "omic" data to identify candidate drugs in cancer.

作者信息

Reinhold William C, Varma Sudhir, Rajapakse Vinodh N, Luna Augustin, Sousa Fabricio Garmus, Kohn Kurt W, Pommier Yves G

机构信息

Developmental Therapeutic Branch, Center for Cancer Research, NCI, NIH, 9000 Rockville Pike, Building 37, room 5041, Bethesda, MD, 20892, USA,

出版信息

Hum Genet. 2015 Jan;134(1):3-11. doi: 10.1007/s00439-014-1482-9. Epub 2014 Sep 12.

Abstract

The current convergence of molecular and pharmacological data provides unprecedented opportunities to gain insights into the relationships between the two types of data. Multiple forms of large-scale molecular data, including but not limited to gene and microRNA transcript expression, DNA somatic and germline variations from next-generation DNA and RNA sequencing, and DNA copy number from array comparative genomic hybridization are all potentially informative when one attempts to recognize the panoply of potentially influential events both for cancer progression and therapeutic outcome. Concurrently, there has also been a substantial expansion of the pharmacological data being accrued in a systematic fashion. For cancer cell lines, the National Cancer Institute cell line panel (NCI-60), the Cancer Cell Line Encyclopedia (CCLE), and the collaborative Genomics of Drug Sensitivity in Cancer (GDSC) databases all provide subsets of these forms of data. For the patient-derived data, The Cancer Genome Atlas (TCGA) provides analogous forms of genomic information along with treatment histories. Integration of these data in turn relies on the fields of statistics and statistical learning. Multiple algorithmic approaches may be chosen, depending on the data being considered, and the nature of the question being asked. Combining these algorithms with prior biological knowledge, the results of molecular biological studies, and the consideration of genes as pathways or functional groups provides both the challenge and the potential of the field. The ultimate goal is to provide a paradigm shift in the way that drugs are selected to provide a more targeted and efficacious outcome for the patient.

摘要

当前分子数据与药理学数据的融合提供了前所未有的机会,以深入了解这两类数据之间的关系。多种形式的大规模分子数据,包括但不限于基因和微小RNA转录本表达、来自新一代DNA和RNA测序的DNA体细胞和种系变异,以及来自阵列比较基因组杂交的DNA拷贝数,当人们试图识别对癌症进展和治疗结果具有潜在影响的一系列事件时,都可能提供有用信息。与此同时,以系统方式积累的药理学数据也有了大幅扩展。对于癌细胞系,美国国立癌症研究所细胞系面板(NCI-60)、癌症细胞系百科全书(CCLE)以及癌症药物敏感性合作基因组学(GDSC)数据库都提供了这些数据形式的子集。对于患者来源的数据,癌症基因组图谱(TCGA)提供了类似形式的基因组信息以及治疗史。这些数据的整合反过来依赖于统计学和统计学习领域。根据所考虑的数据以及所提出问题的性质,可以选择多种算法方法。将这些算法与先前的生物学知识、分子生物学研究结果以及将基因视为通路或功能组的考虑相结合,既带来了该领域的挑战,也带来了潜力。最终目标是在药物选择方式上实现范式转变,为患者提供更具针对性和有效性的治疗结果。

相似文献

1
Using drug response data to identify molecular effectors, and molecular "omic" data to identify candidate drugs in cancer.
Hum Genet. 2015 Jan;134(1):3-11. doi: 10.1007/s00439-014-1482-9. Epub 2014 Sep 12.
2
3
5
Integration of genomic copy number variations and chemotherapy-response biomarkers in pediatric sarcoma.
BMC Med Genomics. 2019 Jan 31;12(Suppl 1):23. doi: 10.1186/s12920-018-0456-5.
7
Predicting breast cancer drug response using a multiple-layer cell line drug response network model.
BMC Cancer. 2021 May 31;21(1):648. doi: 10.1186/s12885-021-08359-6.
8
A decision support framework for genomically informed investigational cancer therapy.
J Natl Cancer Inst. 2015 Apr 11;107(7). doi: 10.1093/jnci/djv098. Print 2015 Jul.
9
Pharmacogenetics and pharmacogenomics as tools in cancer therapy.
Drug Metab Pers Ther. 2016 Mar;31(1):25-34. doi: 10.1515/dmpt-2015-0042.
10
Functional Precision Medicine Identifies Novel Druggable Targets and Therapeutic Options in Head and Neck Cancer.
Clin Cancer Res. 2018 Jun 15;24(12):2828-2843. doi: 10.1158/1078-0432.CCR-17-1339. Epub 2018 Mar 29.

引用本文的文献

2
Predicting cancer drug TARGETS - TreAtment Response Generalized Elastic-neT Signatures.
NPJ Genom Med. 2021 Sep 21;6(1):76. doi: 10.1038/s41525-021-00239-z.
5
The pro-tumorigenic host response to cancer therapies.
Nat Rev Cancer. 2019 Dec;19(12):667-685. doi: 10.1038/s41568-019-0209-6. Epub 2019 Oct 23.
6
Drivers of topoisomerase II poisoning mimic and complement cytotoxicity in AML cells.
Oncotarget. 2019 Sep 3;10(51):5298-5312. doi: 10.18632/oncotarget.27112.
10
rcellminer: exploring molecular profiles and drug response of the NCI-60 cell lines in R.
Bioinformatics. 2016 Apr 15;32(8):1272-4. doi: 10.1093/bioinformatics/btv701. Epub 2015 Dec 3.

本文引用的文献

1
NCI-60 whole exome sequencing and pharmacological CellMiner analyses.
PLoS One. 2014 Jul 17;9(7):e101670. doi: 10.1371/journal.pone.0101670. eCollection 2014.
2
The mutational spectrum of squamous-cell carcinoma of the head and neck: targetable genetic events and clinical impact.
Ann Oncol. 2014 Oct;25(10):1889-1900. doi: 10.1093/annonc/mdu143. Epub 2014 Apr 8.
4
Prediction of individualized therapeutic vulnerabilities in cancer from genomic profiles.
Bioinformatics. 2014 Jul 15;30(14):2051-9. doi: 10.1093/bioinformatics/btu164. Epub 2014 Mar 24.
5
Inconsistency in large pharmacogenomic studies.
Nature. 2013 Dec 19;504(7480):389-93. doi: 10.1038/nature12831. Epub 2013 Nov 27.
6
Cancer: Discrepancies in drug sensitivity.
Nature. 2013 Dec 19;504(7480):381-3. doi: 10.1038/nature12839. Epub 2013 Nov 27.
7
Clinical implementation of germ line cancer pharmacogenetic variants during the next-generation sequencing era.
Clin Pharmacol Ther. 2014 Mar;95(3):269-80. doi: 10.1038/clpt.2013.214. Epub 2013 Oct 17.
8
Global proteome analysis of the NCI-60 cell line panel.
Cell Rep. 2013 Aug 15;4(3):609-20. doi: 10.1016/j.celrep.2013.07.018. Epub 2013 Aug 8.
9
The exomes of the NCI-60 panel: a genomic resource for cancer biology and systems pharmacology.
Cancer Res. 2013 Jul 15;73(14):4372-82. doi: 10.1158/0008-5472.CAN-12-3342.
10
Germline pharmacogenetics of paclitaxel for cancer treatment.
Pharmacogenomics. 2013 Jul;14(9):1065-84. doi: 10.2217/pgs.13.90.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验