Suppr超能文献

S-腺苷甲硫氨酸可提高非酒精性脂肪性肝病患者循环中极低密度脂蛋白的清除率。

S-Adenosylmethionine increases circulating very-low density lipoprotein clearance in non-alcoholic fatty liver disease.

作者信息

Martínez-Uña Maite, Varela-Rey Marta, Mestre Daniela, Fernández-Ares Larraitz, Fresnedo Olatz, Fernandez-Ramos David, Gutiérrez-de Juan Virginia, Martin-Guerrero Idoia, García-Orad Africa, Luka Zigmund, Wagner Conrad, Lu Shelly C, García-Monzón Carmelo, Finnell Richard H, Aurrekoetxea Igor, Buqué Xabier, Martínez-Chantar M Luz, Mato José M, Aspichueta Patricia

机构信息

Department of Physiology, University of the Basque Country UPV/EHU, Spain; Biocruces Research Institute, Spain.

CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Technology Park of Bizkaia, Spain.

出版信息

J Hepatol. 2015 Mar;62(3):673-81. doi: 10.1016/j.jhep.2014.10.019. Epub 2014 Oct 18.

Abstract

BACKGROUND & AIMS: Very-low-density lipoproteins (VLDLs) export lipids from the liver to peripheral tissues and are the precursors of low-density-lipoproteins. Low levels of hepatic S-adenosylmethionine (SAMe) decrease triglyceride (TG) secretion in VLDLs, contributing to hepatosteatosis in methionine adenosyltransferase 1A knockout mice but nothing is known about the effect of SAMe on the circulating VLDL metabolism. We wanted to investigate whether excess SAMe could disrupt VLDL plasma metabolism and unravel the mechanisms involved.

METHODS

Glycine N-methyltransferase (GNMT) knockout (KO) mice, GNMT and perilipin-2 (PLIN2) double KO (GNMT-PLIN2-KO) and their respective wild type (WT) controls were used. A high fat diet (HFD) or a methionine deficient diet (MDD) was administrated to exacerbate or recover VLDL metabolism, respectively. Finally, 33 patients with non-alcoholic fatty-liver disease (NAFLD); 11 with hypertriglyceridemia and 22 with normal lipidemia were used in this study.

RESULTS

We found that excess SAMe increases the turnover of hepatic TG stores for secretion in VLDL in GNMT-KO mice, a model of NAFLD with high SAMe levels. The disrupted VLDL assembly resulted in the secretion of enlarged, phosphatidylethanolamine-poor, TG- and apoE-enriched VLDL-particles; special features that lead to increased VLDL clearance and decreased serum TG levels. Re-establishing normal SAMe levels restored VLDL secretion, features and metabolism. In NAFLD patients, serum TG levels were lower when hepatic GNMT-protein expression was decreased.

CONCLUSIONS

Excess hepatic SAMe levels disrupt VLDL assembly and features and increase circulating VLDL clearance, which will cause increased VLDL-lipid supply to tissues and might contribute to the extrahepatic complications of NAFLD.

摘要

背景与目的

极低密度脂蛋白(VLDL)将脂质从肝脏转运至外周组织,且是低密度脂蛋白的前体。肝脏中S-腺苷甲硫氨酸(SAMe)水平降低会减少VLDL中甘油三酯(TG)的分泌,这在蛋氨酸腺苷转移酶1A基因敲除小鼠中会导致肝脂肪变性,但SAMe对循环中VLDL代谢的影响尚不清楚。我们想研究过量的SAMe是否会扰乱VLDL的血浆代谢,并阐明其中涉及的机制。

方法

使用甘氨酸N-甲基转移酶(GNMT)基因敲除(KO)小鼠、GNMT和脂滴包被蛋白2(PLIN2)双基因敲除(GNMT-PLIN2-KO)小鼠及其各自的野生型(WT)对照。分别给予高脂饮食(HFD)或蛋氨酸缺乏饮食(MDD)以加剧或恢复VLDL代谢。最后,本研究纳入了33例非酒精性脂肪性肝病(NAFLD)患者;11例高甘油三酯血症患者和22例血脂正常患者。

结果

我们发现,在GNMT-KO小鼠(一种SAMe水平高的NAFLD模型)中,过量的SAMe会增加肝脏TG储存的周转率,以便分泌到VLDL中。VLDL组装的破坏导致分泌出更大、富含TG和载脂蛋白E(apoE)、磷脂酰乙醇胺含量低的VLDL颗粒;这些特殊特征导致VLDL清除增加和血清TG水平降低。恢复正常的SAMe水平可恢复VLDL的分泌、特征和代谢。在NAFLD患者中,当肝脏GNMT蛋白表达降低时,血清TG水平较低。

结论

肝脏中过量的SAMe水平会扰乱VLDL的组装和特征,并增加循环中VLDL的清除,这将导致VLDL向组织的脂质供应增加,并可能导致NAFLD的肝外并发症。

相似文献

1
S-Adenosylmethionine increases circulating very-low density lipoprotein clearance in non-alcoholic fatty liver disease.
J Hepatol. 2015 Mar;62(3):673-81. doi: 10.1016/j.jhep.2014.10.019. Epub 2014 Oct 18.
3
Excess S-adenosylmethionine reroutes phosphatidylethanolamine towards phosphatidylcholine and triglyceride synthesis.
Hepatology. 2013 Oct;58(4):1296-305. doi: 10.1002/hep.26399. Epub 2013 Aug 14.
5
Liver-specific loss of Perilipin 2 alleviates diet-induced hepatic steatosis, inflammation, and fibrosis.
Am J Physiol Gastrointest Liver Physiol. 2016 May 1;310(9):G726-38. doi: 10.1152/ajpgi.00436.2015. Epub 2016 Mar 11.
6
miR-873-5p targets mitochondrial GNMT-Complex II interface contributing to non-alcoholic fatty liver disease.
Mol Metab. 2019 Nov;29:40-54. doi: 10.1016/j.molmet.2019.08.008. Epub 2019 Aug 16.
7
Methionine restriction prevents the progression of hepatic steatosis in leptin-deficient obese mice.
Metabolism. 2013 Nov;62(11):1651-61. doi: 10.1016/j.metabol.2013.06.012. Epub 2013 Aug 5.
10
Dysregulated Hepatic Methionine Metabolism Drives Homocysteine Elevation in Diet-Induced Nonalcoholic Fatty Liver Disease.
PLoS One. 2015 Aug 31;10(8):e0136822. doi: 10.1371/journal.pone.0136822. eCollection 2015.

引用本文的文献

2
S-adenosylmethionine deficit disrupts very low-density lipoprotein metabolism promoting liver lipid accumulation in mice.
J Lipid Res. 2025 May;66(5):100794. doi: 10.1016/j.jlr.2025.100794. Epub 2025 Apr 1.
5
In Vivo Tissue Lipid Uptake in Antisense Oligonucleotide (ASO)-Treated Mice.
Methods Mol Biol. 2023;2675:1-13. doi: 10.1007/978-1-0716-3247-5_1.
6
Phosphatidylethanolamine N-methyltransferase: from Functions to Diseases.
Aging Dis. 2023 Jun 1;14(3):879-891. doi: 10.14336/AD.2022.1025.
7
Liver PP2A-Cα Protects From Parenteral Nutrition-associated Hepatic Steatosis.
Cell Mol Gastroenterol Hepatol. 2022;14(3):669-692. doi: 10.1016/j.jcmgh.2022.05.008. Epub 2022 May 26.
8
Characterization and Roles of Membrane Lipids in Fatty Liver Disease.
Membranes (Basel). 2022 Apr 9;12(4):410. doi: 10.3390/membranes12040410.
9
Perilipins at a glance.
J Cell Sci. 2022 Mar 1;135(5). doi: 10.1242/jcs.259501. Epub 2022 Mar 9.

本文引用的文献

1
Inflammatory stress increases hepatic CD36 translational efficiency via activation of the mTOR signalling pathway.
PLoS One. 2014 Jul 21;9(7):e103071. doi: 10.1371/journal.pone.0103071. eCollection 2014.
2
Rapamycin-mediated CD36 translational suppression contributes to alleviation of hepatic steatosis.
Biochem Biophys Res Commun. 2014 Apr 25;447(1):57-63. doi: 10.1016/j.bbrc.2014.03.103. Epub 2014 Mar 28.
3
Plin2 inhibits cellular glucose uptake through interactions with SNAP23, a SNARE complex protein.
PLoS One. 2013 Sep 6;8(9):e73696. doi: 10.1371/journal.pone.0073696. eCollection 2013.
4
Extrahepatic complications of nonalcoholic fatty liver disease.
Hepatology. 2014 Mar;59(3):1174-97. doi: 10.1002/hep.26717. Epub 2014 Jan 16.
5
Relationship between methylome and transcriptome in patients with nonalcoholic fatty liver disease.
Gastroenterology. 2013 Nov;145(5):1076-87. doi: 10.1053/j.gastro.2013.07.047. Epub 2013 Jul 31.
7
Lipoprotein metabolism in nonalcoholic fatty liver disease.
J Biomed Res. 2013 Jan;27(1):1-13. doi: 10.7555/JBR.27.20120077. Epub 2012 Dec 1.
8
Excess S-adenosylmethionine reroutes phosphatidylethanolamine towards phosphatidylcholine and triglyceride synthesis.
Hepatology. 2013 Oct;58(4):1296-305. doi: 10.1002/hep.26399. Epub 2013 Aug 14.
10
Steatosis does not impair liver regeneration after partial hepatectomy.
Lab Invest. 2013 Jan;93(1):20-30. doi: 10.1038/labinvest.2012.142. Epub 2012 Oct 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验