Suppr超能文献

线粒体丙酮酸载体对底物利用的调节

Regulation of substrate utilization by the mitochondrial pyruvate carrier.

作者信息

Vacanti Nathaniel M, Divakaruni Ajit S, Green Courtney R, Parker Seth J, Henry Robert R, Ciaraldi Theodore P, Murphy Anne N, Metallo Christian M

机构信息

Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.

Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA.

出版信息

Mol Cell. 2014 Nov 6;56(3):425-435. doi: 10.1016/j.molcel.2014.09.024. Epub 2014 Oct 30.

Abstract

Pyruvate lies at a central biochemical node connecting carbohydrate, amino acid, and fatty acid metabolism, and the regulation of pyruvate flux into mitochondria represents a critical step in intermediary metabolism impacting numerous diseases. To characterize changes in mitochondrial substrate utilization in the context of compromised mitochondrial pyruvate transport, we applied (13)C metabolic flux analysis (MFA) to cells after transcriptional or pharmacological inhibition of the mitochondrial pyruvate carrier (MPC). Despite profound suppression of both glucose and pyruvate oxidation, cell growth, oxygen consumption, and tricarboxylic acid (TCA) metabolism were surprisingly maintained. Oxidative TCA flux was achieved through enhanced reliance on glutaminolysis through malic enzyme and pyruvate dehydrogenase (PDH) as well as fatty acid and branched-chain amino acid oxidation. Thus, in contrast to inhibition of complex I or PDH, suppression of pyruvate transport induces a form of metabolic flexibility associated with the use of lipids and amino acids as catabolic and anabolic fuels.

摘要

丙酮酸处于连接碳水化合物、氨基酸和脂肪酸代谢的核心生化节点,丙酮酸流入线粒体的调节是中间代谢中的关键步骤,影响着众多疾病。为了在受损的线粒体丙酮酸转运背景下表征线粒体底物利用的变化,我们在转录或药理学抑制线粒体丙酮酸载体(MPC)后,对细胞应用了(13)C代谢通量分析(MFA)。尽管葡萄糖和丙酮酸氧化均受到深度抑制,但细胞生长、耗氧量和三羧酸(TCA)代谢却出人意料地得以维持。通过增强对苹果酸酶和丙酮酸脱氢酶(PDH)介导的谷氨酰胺分解以及脂肪酸和支链氨基酸氧化的依赖,实现了氧化型TCA通量。因此,与抑制复合体I或PDH不同,丙酮酸转运的抑制诱导了一种代谢灵活性形式,这种形式与使用脂质和氨基酸作为分解代谢和合成代谢燃料相关。

相似文献

1
Regulation of substrate utilization by the mitochondrial pyruvate carrier.
Mol Cell. 2014 Nov 6;56(3):425-435. doi: 10.1016/j.molcel.2014.09.024. Epub 2014 Oct 30.
3
Fatty acid oxidation alleviates the energy deficiency caused by the loss of MPC1 in MPC1 mice.
Biochem Biophys Res Commun. 2018 Jan 1;495(1):1008-1013. doi: 10.1016/j.bbrc.2017.11.134. Epub 2017 Nov 21.
4
Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport.
Mol Cell. 2014 Nov 6;56(3):414-424. doi: 10.1016/j.molcel.2014.09.025. Epub 2014 Oct 21.
7
Metabolic and oncogenic adaptations to pyruvate dehydrogenase inactivation in fibroblasts.
J Biol Chem. 2019 Apr 5;294(14):5466-5486. doi: 10.1074/jbc.RA118.005200. Epub 2019 Feb 12.
8
c-Myc programs fatty acid metabolism and dictates acetyl-CoA abundance and fate.
J Biol Chem. 2014 Sep 5;289(36):25382-92. doi: 10.1074/jbc.M114.580662. Epub 2014 Jul 22.
9
Genetic activation of pyruvate dehydrogenase alters oxidative substrate selection to induce skeletal muscle insulin resistance.
Proc Natl Acad Sci U S A. 2014 Nov 18;111(46):16508-13. doi: 10.1073/pnas.1419104111. Epub 2014 Nov 3.

引用本文的文献

4
A Critical Role for the Mitochondrial Pyruvate Carrier in Hepatic Stellate Cell Activation.
Cell Mol Gastroenterol Hepatol. 2025 Apr 14;19(8):101517. doi: 10.1016/j.jcmgh.2025.101517.
5
Structures and mechanism of the human mitochondrial pyruvate carrier.
Nature. 2025 May;641(8061):258-265. doi: 10.1038/s41586-025-08873-8. Epub 2025 Mar 18.
8
WBSCR16 is essential for mitochondrial 16S rRNA processing in mammals.
Nucleic Acids Res. 2025 Jan 24;53(3). doi: 10.1093/nar/gkae1325.
9
Pro-inflammatory macrophage activation does not require inhibition of oxidative phosphorylation.
EMBO Rep. 2025 Feb;26(4):982-1002. doi: 10.1038/s44319-024-00351-y. Epub 2025 Jan 3.

本文引用的文献

1
Mitochondrial pyruvate carrier 2 hypomorphism in mice leads to defects in glucose-stimulated insulin secretion.
Cell Rep. 2014 Jun 26;7(6):2042-2053. doi: 10.1016/j.celrep.2014.05.017. Epub 2014 Jun 5.
2
Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells.
Mol Cell. 2014 Jul 17;55(2):253-63. doi: 10.1016/j.molcel.2014.05.008. Epub 2014 May 29.
3
A high-throughput fluorimetric assay for 2-hydroxyglutarate identifies Zaprinast as a glutaminase inhibitor.
Cancer Discov. 2014 Jul;4(7):828-39. doi: 10.1158/2159-8290.CD-13-0572. Epub 2014 Apr 16.
4
Mitochondrial metabolism of pyruvate is essential for regulating glucose-stimulated insulin secretion.
J Biol Chem. 2014 May 9;289(19):13335-46. doi: 10.1074/jbc.M113.521666. Epub 2014 Mar 27.
5
INCA: a computational platform for isotopically non-stationary metabolic flux analysis.
Bioinformatics. 2014 May 1;30(9):1333-5. doi: 10.1093/bioinformatics/btu015. Epub 2014 Jan 11.
8
Cellular fatty acid metabolism and cancer.
Cell Metab. 2013 Aug 6;18(2):153-61. doi: 10.1016/j.cmet.2013.05.017. Epub 2013 Jun 20.
10
Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids.
Proc Natl Acad Sci U S A. 2013 May 28;110(22):8882-7. doi: 10.1073/pnas.1307237110. Epub 2013 May 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验