Suppr超能文献

内质网中N-连接糖调节的蛋白质折叠与质量控制

N-linked sugar-regulated protein folding and quality control in the ER.

作者信息

Tannous Abla, Pisoni Giorgia Brambilla, Hebert Daniel N, Molinari Maurizio

机构信息

Department of Biochemistry and Molecular Biology, Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003, USA.

Università della Svizzera italiana, CH-6900 Lugano, Switzerland.

出版信息

Semin Cell Dev Biol. 2015 May;41:79-89. doi: 10.1016/j.semcdb.2014.12.001. Epub 2014 Dec 19.

Abstract

Asparagine-linked glycans (N-glycans) are displayed on the majority of proteins synthesized in the endoplasmic reticulum (ER). Removal of the outermost glucose residue recruits the lectin chaperone malectin possibly involved in a first triage of defective polypeptides. Removal of a second glucose promotes engagement of folding and quality control machineries built around the ER lectin chaperones calnexin (CNX) and calreticulin (CRT) and including oxidoreductases and peptidyl-prolyl isomerases. Deprivation of the last glucose residue dictates the release of N-glycosylated polypeptides from the lectin chaperones. Correctly folded proteins are authorized to leave the ER. Non-native polypeptides are recognized by the ER quality control key player UDP-glucose glycoprotein glucosyltransferase 1 (UGT1), re-glucosylated and re-addressed to the CNX/CRT chaperone binding cycle to provide additional opportunity for the protein to fold in the ER. Failure to attain the native structure determines the selection of the misfolded polypeptides for proteasome-mediated degradation.

摘要

天冬酰胺连接聚糖(N-聚糖)存在于在内质网(ER)中合成的大多数蛋白质上。去除最外层的葡萄糖残基会招募凝集素伴侣分子Malectin,它可能参与对有缺陷多肽的初步分类。去除第二个葡萄糖会促进围绕内质网凝集素伴侣分子钙连蛋白(CNX)和钙网蛋白(CRT)构建的折叠和质量控制机制的参与,这些机制还包括氧化还原酶和肽基脯氨酰异构酶。去除最后一个葡萄糖残基会促使N-糖基化多肽从凝集素伴侣分子上释放。正确折叠的蛋白质被允许离开内质网。非天然多肽被内质网质量控制的关键参与者UDP-葡萄糖糖蛋白糖基转移酶1(UGT1)识别,重新糖基化并重新进入CNX/CRT伴侣分子结合循环,为蛋白质在内质网中折叠提供额外机会。未能达到天然结构会导致选择错误折叠的多肽进行蛋白酶体介导的降解。

相似文献

1
N-linked sugar-regulated protein folding and quality control in the ER.
Semin Cell Dev Biol. 2015 May;41:79-89. doi: 10.1016/j.semcdb.2014.12.001. Epub 2014 Dec 19.
3
UDP-glucose:glycoprotein glucosyltransferase (UGGT1) promotes substrate solubility in the endoplasmic reticulum.
Mol Biol Cell. 2013 Sep;24(17):2597-608. doi: 10.1091/mbc.E13-02-0101. Epub 2013 Jul 17.
4
Calnexin cycle - structural features of the ER chaperone system.
FEBS J. 2020 Oct;287(20):4322-4340. doi: 10.1111/febs.15330. Epub 2020 Apr 27.
7
Reglucosylation by UDP-glucose:glycoprotein glucosyltransferase 1 delays glycoprotein secretion but not degradation.
Mol Biol Cell. 2015 Feb 1;26(3):390-405. doi: 10.1091/mbc.E14-08-1254. Epub 2014 Nov 26.
9
N-glycosylation mediated folding and quality control in serine proteases of the hepsin family.
FEBS J. 2023 Aug;290(16):3963-3965. doi: 10.1111/febs.16779. Epub 2023 Apr 4.
10
Substrate-specific requirements for UGT1-dependent release from calnexin.
Mol Cell. 2007 Jul 20;27(2):238-249. doi: 10.1016/j.molcel.2007.05.032.

引用本文的文献

1
Functional Divergence for N-Linked Glycosylation Sites in Equine Lutropin/Choriogonadotropin Receptors.
Curr Issues Mol Biol. 2025 Jul 25;47(8):590. doi: 10.3390/cimb47080590.
2
Glycosylation in kidney diseases.
Precis Clin Med. 2025 Jul 11;8(3):pbaf017. doi: 10.1093/pcmedi/pbaf017. eCollection 2025 Sep.
3
Ferritin Nanocages Exhibit Unique Structural Dynamics When Displaying Surface Protein.
Int J Mol Sci. 2025 Jul 22;26(15):7047. doi: 10.3390/ijms26157047.
4
Collagen Biosynthesis and Its Molecular Ensemble: What Remains Unexplored.
Biochemistry. 2025 Aug 5;64(15):3149-3155. doi: 10.1021/acs.biochem.5c00261. Epub 2025 Jul 10.
6
N-glycan-dependent protein maturation and quality control in the ER.
Nat Rev Mol Cell Biol. 2025 May 19. doi: 10.1038/s41580-025-00855-y.
8
Male sex determination maintains proteostasis and extends lifespan of daf-18/PTEN deficient C. elegans.
EMBO Rep. 2025 Feb;26(4):1084-1113. doi: 10.1038/s44319-025-00368-x. Epub 2025 Jan 16.
9
Unraveling the impact of SARS-CoV-2 mutations on immunity: insights from innate immune recognition to antibody and T cell responses.
Front Immunol. 2024 Dec 10;15:1412873. doi: 10.3389/fimmu.2024.1412873. eCollection 2024.

本文引用的文献

1
Reglucosylation by UDP-glucose:glycoprotein glucosyltransferase 1 delays glycoprotein secretion but not degradation.
Mol Biol Cell. 2015 Feb 1;26(3):390-405. doi: 10.1091/mbc.E14-08-1254. Epub 2014 Nov 26.
2
The intrinsic and extrinsic effects of N-linked glycans on glycoproteostasis.
Nat Chem Biol. 2014 Nov;10(11):902-10. doi: 10.1038/nchembio.1651. Epub 2014 Oct 17.
3
PDI family protein ERp29 forms 1:1 complex with lectin chaperone calreticulin.
Biochem Biophys Res Commun. 2014 Sep 12;452(1):27-31. doi: 10.1016/j.bbrc.2014.08.041. Epub 2014 Aug 15.
4
Mechanistic insights into Pin1 peptidyl-prolyl cis-trans isomerization from umbrella sampling simulations.
Proteins. 2014 Nov;82(11):2943-56. doi: 10.1002/prot.24650. Epub 2014 Aug 11.
5
Depletion of cyclophilins B and C leads to dysregulation of endoplasmic reticulum redox homeostasis.
J Biol Chem. 2014 Aug 15;289(33):23086-23096. doi: 10.1074/jbc.M114.570911. Epub 2014 Jul 2.
7
The back and forth of cargo exit from the endoplasmic reticulum.
Curr Biol. 2014 Feb 3;24(3):R130-6. doi: 10.1016/j.cub.2013.12.008.
8
Structural basis for disparate sugar-binding specificities in the homologous cargo receptors ERGIC-53 and VIP36.
PLoS One. 2014 Feb 3;9(2):e87963. doi: 10.1371/journal.pone.0087963. eCollection 2014.
9
Both isoforms of human UDP-glucose:glycoprotein glucosyltransferase are enzymatically active.
Glycobiology. 2014 Apr;24(4):344-50. doi: 10.1093/glycob/cwt163. Epub 2014 Jan 9.
10
Glycan-dependent and -independent interactions contribute to cellular substrate recruitment by calreticulin.
J Biol Chem. 2013 Dec 6;288(49):35104-16. doi: 10.1074/jbc.M113.507921. Epub 2013 Oct 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验