Suppr超能文献

在微流控装置中诱导趋化性和贴壁趋化性信号用于三维体外分析。

Inducing chemotactic and haptotactic cues in microfluidic devices for three-dimensional in vitro assays.

机构信息

Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research, University of Zaragoza , Zaragoza, Spain.

出版信息

Biomicrofluidics. 2014 Dec 11;8(6):064122. doi: 10.1063/1.4903948. eCollection 2014 Nov.

Abstract

Microfluidic devices allow for the production of physiologically relevant cellular microenvironments by including biomimetic hydrogels and generating controlled chemical gradients. During transport, the biomolecules interact in distinct ways with the fibrillar networks: as purely diffusive factors in the soluble fluid or bound to the matrix proteins. These two main mechanisms may regulate distinct cell responses in order to guide their directional migration: caused by the substrate-bound chemoattractant gradient (haptotaxis) or by the gradient established within the soluble fluid (chemotaxis). In this work 3D diffusion experiments, in combination with ELISA assays, are performed using microfluidic platforms in order to quantify the distribution of PDGF-BB and TGF-β1 across collagen and fibrin gels. Furthermore, to gain a deeper understanding of the fundamental processes, the experiments are reproduced by computer simulations based on a reaction-diffusion transport model. This model yields an accurate prediction of the experimental results, confirming that diffusion and binding phenomena are established within the microdevice.

摘要

微流控设备通过包含仿生水凝胶和生成受控化学梯度来实现生理相关的细胞微环境。在运输过程中,生物分子以不同的方式与纤维状网络相互作用:作为可溶性流体中的纯扩散因子或与基质蛋白结合。这两种主要机制可能调节不同的细胞反应,以指导它们的定向迁移:由基质结合趋化因子梯度(趋触性)引起或由可溶性流体中建立的梯度引起(趋化性)。在这项工作中,使用微流控平台进行了 3D 扩散实验,结合 ELISA 测定,以定量测定 PDGF-BB 和 TGF-β1 在胶原蛋白和纤维蛋白凝胶中的分布。此外,为了更深入地了解基本过程,实验通过基于反应-扩散输运模型的计算机模拟进行了再现。该模型对实验结果进行了准确预测,证实了扩散和结合现象在微器件内建立。

相似文献

1
Inducing chemotactic and haptotactic cues in microfluidic devices for three-dimensional in vitro assays.
Biomicrofluidics. 2014 Dec 11;8(6):064122. doi: 10.1063/1.4903948. eCollection 2014 Nov.
2
Substrate-bound protein gradients to study haptotaxis.
Front Bioeng Biotechnol. 2015 Mar 30;3:40. doi: 10.3389/fbioe.2015.00040. eCollection 2015.
4
Fibroblast Migration in 3D is Controlled by Haptotaxis in a Non-muscle Myosin II-Dependent Manner.
Ann Biomed Eng. 2015 Dec;43(12):3025-39. doi: 10.1007/s10439-015-1343-2. Epub 2015 May 27.
5
6
A web-based application for automated quantification of chemical gradients induced in microfluidic devices.
Comput Biol Med. 2018 Apr 1;95:118-128. doi: 10.1016/j.compbiomed.2018.02.001. Epub 2018 Feb 6.
7
8
Signal transduction for chemotaxis and haptotaxis by matrix molecules in tumor cells.
J Cell Biol. 1990 Apr;110(4):1427-38. doi: 10.1083/jcb.110.4.1427.
9
Biological applications of microfluidic gradient devices.
Integr Biol (Camb). 2010 Nov;2(11-12):584-603. doi: 10.1039/c0ib00055h. Epub 2010 Oct 19.
10
Chapter 15. A microfluidics-based method for chemoattractant gradients.
Methods Enzymol. 2009;461:333-47. doi: 10.1016/S0076-6879(09)05415-9.

引用本文的文献

1
Lamellipodia-Mediated Osteoblast Haptotaxis Guided by Fibronectin Ligand Concentrations on a Multiplex Chip.
Small. 2024 Dec;20(49):e2401717. doi: 10.1002/smll.202401717. Epub 2024 Sep 17.
2
Polydopamine Interfacial Coating for Stable Tumor-on-a-Chip Models: Application for Pancreatic Ductal Adenocarcinoma.
Biomacromolecules. 2024 Aug 12;25(8):5169-5180. doi: 10.1021/acs.biomac.4c00551. Epub 2024 Jul 31.
4
Bone-on-a-chip: microfluidic technologies and microphysiologic models of bone tissue.
Adv Funct Mater. 2021 Feb 3;31(6). doi: 10.1002/adfm.202006796. Epub 2020 Oct 25.
5
Towards Models of the Inflammatory Response in Bone Fracture Healing.
Front Bioeng Biotechnol. 2021 Sep 30;9:703725. doi: 10.3389/fbioe.2021.703725. eCollection 2021.
7
10
Computational model of mesenchymal migration in 3D under chemotaxis.
Comput Methods Biomech Biomed Engin. 2017 Jan;20(1):59-74. doi: 10.1080/10255842.2016.1198784. Epub 2016 Jun 23.

本文引用的文献

3
Growth factors engineered for super-affinity to the extracellular matrix enhance tissue healing.
Science. 2014 Feb 21;343(6173):885-8. doi: 10.1126/science.1247663.
4
Measurement of biomolecular diffusion in extracellular matrix condensed by fibroblasts using fluorescence correlation spectroscopy.
PLoS One. 2013 Nov 28;8(11):e82382. doi: 10.1371/journal.pone.0082382. eCollection 2013.
5
Pancreatic stellate cells promote hapto-migration of cancer cells through collagen I-mediated signalling pathway.
Br J Cancer. 2014 Jan 21;110(2):409-20. doi: 10.1038/bjc.2013.706. Epub 2013 Nov 7.
6
Mechanical guidance of cell migration: lessons from chemotaxis.
Curr Opin Cell Biol. 2013 Oct;25(5):543-9. doi: 10.1016/j.ceb.2013.04.010. Epub 2013 May 28.
7
Recent developments in microfluidics-based chemotaxis studies.
Lab Chip. 2013 Jul 7;13(13):2484-99. doi: 10.1039/c3lc50415h. Epub 2013 May 28.
8
Microfluidic platforms for mechanobiology.
Lab Chip. 2013 Jun 21;13(12):2252-67. doi: 10.1039/c3lc41393d. Epub 2013 May 7.
9
A cell-based model of extracellular-matrix-guided endothelial cell migration during angiogenesis.
Bull Math Biol. 2013 Aug;75(8):1377-99. doi: 10.1007/s11538-013-9826-5. Epub 2013 Mar 15.
10
Heparin-binding domain of fibrin(ogen) binds growth factors and promotes tissue repair when incorporated within a synthetic matrix.
Proc Natl Acad Sci U S A. 2013 Mar 19;110(12):4563-8. doi: 10.1073/pnas.1221602110. Epub 2013 Mar 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验