Suppr超能文献

寻找结核病保护性关联因素

Quest for correlates of protection against tuberculosis.

作者信息

Bhatt Kamlesh, Verma Sheetal, Ellner Jerrold J, Salgame Padmini

机构信息

Department of Medicine, Center for Emerging Pathogens, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey, USA.

Section of Infectious Diseases, Department of Medicine, Boston Medical Center and Boston University School of Medicine, Boston, Massachusetts, USA.

出版信息

Clin Vaccine Immunol. 2015 Mar;22(3):258-66. doi: 10.1128/CVI.00721-14. Epub 2015 Jan 14.

Abstract

A major impediment to tuberculosis (TB) vaccine development is the lack of reliable correlates of immune protection or biomarkers that would predict vaccine efficacy. Gamma interferon (IFN-γ) produced by CD4(+) T cells and, recently, multifunctional CD4(+) T cells secreting IFN-γ, tumor necrosis factor (TNF), and interleukin-2 (IL-2) have been used in vaccine studies as a measurable immune parameter, reflecting activity of a vaccine and potentially predicting protection. However, accumulating experimental evidence suggests that host resistance against Mycobacterium tuberculosis infection is independent of IFN-γ and TNF secretion from CD4(+) T cells. Furthermore, the booster vaccine MVA85A, despite generating a high level of multifunctional CD4(+) T cell response in the host, failed to confer enhanced protection in vaccinated subjects. These findings suggest the need for identifying reliable correlates of protection to determine the efficacy of TB vaccine candidates. This article focuses on alternative pathways that mediate M. tuberculosis control and their potential for serving as markers of protection. The review also discusses the significance of investigating the natural human immune response to M. tuberculosis to identify the correlates of protection in vaccination.

摘要

结核病(TB)疫苗研发的一个主要障碍是缺乏可靠的免疫保护相关指标或生物标志物来预测疫苗效力。CD4(+) T细胞产生的γ干扰素(IFN-γ),以及最近分泌IFN-γ、肿瘤坏死因子(TNF)和白细胞介素-2(IL-2)的多功能CD4(+) T细胞,已在疫苗研究中用作可测量的免疫参数,反映疫苗的活性并可能预测保护作用。然而,越来越多的实验证据表明,宿主对结核分枝杆菌感染的抵抗力独立于CD4(+) T细胞分泌的IFN-γ和TNF。此外,加强疫苗MVA85A尽管在宿主中产生了高水平的多功能CD4(+) T细胞反应,但未能在接种疫苗的受试者中提供增强的保护。这些发现表明需要确定可靠的保护相关指标,以确定结核病候选疫苗的效力。本文重点关注介导结核分枝杆菌控制的替代途径及其作为保护标志物的潜力。该综述还讨论了研究人类对结核分枝杆菌的天然免疫反应以确定疫苗接种中保护相关指标的意义。

相似文献

1
Quest for correlates of protection against tuberculosis.
Clin Vaccine Immunol. 2015 Mar;22(3):258-66. doi: 10.1128/CVI.00721-14. Epub 2015 Jan 14.
4
7
A comparison of antigen-specific T cell responses induced by six novel tuberculosis vaccine candidates.
PLoS Pathog. 2019 Mar 4;15(3):e1007643. doi: 10.1371/journal.ppat.1007643. eCollection 2019 Mar.
9
Protective CD4 T cells targeting cryptic epitopes of Mycobacterium tuberculosis resist infection-driven terminal differentiation.
J Immunol. 2014 Apr 1;192(7):3247-58. doi: 10.4049/jimmunol.1300283. Epub 2014 Feb 26.

引用本文的文献

1
BCG vaccination: historical role, modern applications, and future perspectives in tuberculosis and beyond.
Front Pediatr. 2025 Jul 31;13:1603732. doi: 10.3389/fped.2025.1603732. eCollection 2025.
4
Immune correlates of protection as a game changer in tuberculosis vaccine development.
NPJ Vaccines. 2024 Oct 30;9(1):208. doi: 10.1038/s41541-024-01004-w.
5
Shared challenges to the control of complex intracellular neglected pathogens.
Front Public Health. 2024 Sep 11;12:1423420. doi: 10.3389/fpubh.2024.1423420. eCollection 2024.
6
The BCG vaccine, advantages, and disadvantages of introducing new generation vaccines against .
Clin Exp Vaccine Res. 2024 Jul;13(3):184-201. doi: 10.7774/cevr.2024.13.3.184. Epub 2024 Jul 31.
7
Modulation of Human Macrophages by Plasma from COVID-19 Patients Following BCG Vaccination: BATTLE Trial.
Int J Gen Med. 2024 Jul 16;17:3107-3117. doi: 10.2147/IJGM.S468047. eCollection 2024.
9
Model-based impact evaluation of new tuberculosis vaccines in aging populations under different modeling scenarios: the case of China.
Front Public Health. 2024 Feb 23;12:1302688. doi: 10.3389/fpubh.2024.1302688. eCollection 2024.
10
Addressing mechanism bias in model-based impact forecasts of new tuberculosis vaccines.
Nat Commun. 2023 Sep 1;14(1):5312. doi: 10.1038/s41467-023-40976-6.

本文引用的文献

1
Memory-T-cell-derived interferon-γ instructs potent innate cell activation for protective immunity.
Immunity. 2014 Jun 19;40(6):974-88. doi: 10.1016/j.immuni.2014.05.005. Epub 2014 Jun 12.
2
Unexpected role for IL-17 in protective immunity against hypervirulent Mycobacterium tuberculosis HN878 infection.
PLoS Pathog. 2014 May 15;10(5):e1004099. doi: 10.1371/journal.ppat.1004099. eCollection 2014 May.
4
Immunological memory within the innate immune system.
EMBO J. 2014 Jun 17;33(12):1295-303. doi: 10.1002/embj.201387651. Epub 2014 Mar 27.
5
Single-cell technologies for monitoring immune systems.
Nat Immunol. 2014 Feb;15(2):128-35. doi: 10.1038/ni.2796.
6
Nfil3-independent lineage maintenance and antiviral response of natural killer cells.
J Exp Med. 2013 Dec 16;210(13):2981-90. doi: 10.1084/jem.20130417. Epub 2013 Nov 25.
8
Transcriptional blood signatures distinguish pulmonary tuberculosis, pulmonary sarcoidosis, pneumonias and lung cancers.
PLoS One. 2013 Aug 5;8(8):e70630. doi: 10.1371/journal.pone.0070630. Print 2013.
9
Training innate immunity: the changing concept of immunological memory in innate host defence.
Eur J Clin Invest. 2013 Aug;43(8):881-4. doi: 10.1111/eci.12132.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验