Suppr超能文献

代偿性谷氨酰胺代谢促进胶质母细胞瘤对mTOR抑制剂治疗的耐药性。

Compensatory glutamine metabolism promotes glioblastoma resistance to mTOR inhibitor treatment.

作者信息

Tanaka Kazuhiro, Sasayama Takashi, Irino Yasuhiro, Takata Kumi, Nagashima Hiroaki, Satoh Naoko, Kyotani Katsusuke, Mizowaki Takashi, Imahori Taichiro, Ejima Yasuo, Masui Kenta, Gini Beatrice, Yang Huijun, Hosoda Kohkichi, Sasaki Ryohei, Mischel Paul S, Kohmura Eiji

出版信息

J Clin Invest. 2015 Apr;125(4):1591-602. doi: 10.1172/JCI78239. Epub 2015 Mar 23.

Abstract

The mechanistic target of rapamycin (mTOR) is hyperactivated in many types of cancer, rendering it a compelling drug target; however, the impact of mTOR inhibition on metabolic reprogramming in cancer is incompletely understood. Here, by integrating metabolic and functional studies in glioblastoma multiforme (GBM) cell lines, preclinical models, and clinical samples, we demonstrate that the compensatory upregulation of glutamine metabolism promotes resistance to mTOR kinase inhibitors. Metabolomic studies in GBM cells revealed that glutaminase (GLS) and glutamate levels are elevated following mTOR kinase inhibitor treatment. Moreover, these mTOR inhibitor-dependent metabolic alterations were confirmed in a GBM xenograft model. Expression of GLS following mTOR inhibitor treatment promoted GBM survival in an α-ketoglutarate-dependent (αKG-dependent) manner. Combined genetic and/or pharmacological inhibition of mTOR kinase and GLS resulted in massive synergistic tumor cell death and growth inhibition in tumor-bearing mice. These results highlight a critical role for compensatory glutamine metabolism in promoting mTOR inhibitor resistance and suggest that rational combination therapy has the potential to suppress resistance.

摘要

雷帕霉素的作用靶点(mTOR)在多种癌症中被过度激活,使其成为一个极具吸引力的药物靶点;然而,mTOR抑制对癌症代谢重编程的影响尚未完全明确。在此,通过整合多形性胶质母细胞瘤(GBM)细胞系、临床前模型和临床样本中的代谢与功能研究,我们证明谷氨酰胺代谢的代偿性上调促进了对mTOR激酶抑制剂的耐药性。GBM细胞的代谢组学研究表明,mTOR激酶抑制剂处理后谷氨酰胺酶(GLS)和谷氨酸水平升高。此外,这些依赖于mTOR抑制剂的代谢改变在GBM异种移植模型中得到了证实。mTOR抑制剂处理后GLS的表达以α-酮戊二酸依赖性(αKG依赖性)方式促进了GBM的存活。mTOR激酶和GLS的联合基因和/或药理学抑制导致荷瘤小鼠出现大量协同性肿瘤细胞死亡和生长抑制。这些结果突出了代偿性谷氨酰胺代谢在促进mTOR抑制剂耐药性中的关键作用,并表明合理的联合治疗有可能抑制耐药性。

相似文献

1
Compensatory glutamine metabolism promotes glioblastoma resistance to mTOR inhibitor treatment.
J Clin Invest. 2015 Apr;125(4):1591-602. doi: 10.1172/JCI78239. Epub 2015 Mar 23.
3
mTORC1-Dependent Metabolic Reprogramming Underlies Escape from Glycolysis Addiction in Cancer Cells.
Cancer Cell. 2016 Apr 11;29(4):548-562. doi: 10.1016/j.ccell.2016.02.018. Epub 2016 Mar 24.
4
Cooperative Blockade of PKCα and JAK2 Drives Apoptosis in Glioblastoma.
Cancer Res. 2020 Feb 15;80(4):709-718. doi: 10.1158/0008-5472.CAN-18-2808. Epub 2019 Dec 5.
5
The protein arginine methyltransferase PRMT5 confers therapeutic resistance to mTOR inhibition in glioblastoma.
J Neurooncol. 2019 Oct;145(1):11-22. doi: 10.1007/s11060-019-03274-0. Epub 2019 Aug 31.
8
Evaluation of tyrosine kinase inhibitor combinations for glioblastoma therapy.
PLoS One. 2012;7(10):e44372. doi: 10.1371/journal.pone.0044372. Epub 2012 Oct 2.
9
Inhibition of SAPK2/p38 enhances sensitivity to mTORC1 inhibition by blocking IRES-mediated translation initiation in glioblastoma.
Mol Cancer Ther. 2011 Dec;10(12):2244-56. doi: 10.1158/1535-7163.MCT-11-0478. Epub 2011 Sep 12.
10
Combined CDK4/6 and mTOR Inhibition Is Synergistic against Glioblastoma via Multiple Mechanisms.
Clin Cancer Res. 2017 Nov 15;23(22):6958-6968. doi: 10.1158/1078-0432.CCR-17-0803. Epub 2017 Aug 16.

引用本文的文献

5
Targeting Metabolic Adaptation of Colorectal Cancer with Vanadium-Doped Nanosystem to Enhance Chemotherapy and Immunotherapy.
Adv Sci (Weinh). 2025 Feb;12(7):e2409329. doi: 10.1002/advs.202409329. Epub 2024 Dec 30.
6
Disrupted glutamate homeostasis as a target for glioma therapy.
Pharmacol Rep. 2024 Dec;76(6):1305-1317. doi: 10.1007/s43440-024-00644-y. Epub 2024 Sep 11.
8
Metabolic reprogramming and immune evasion: the interplay in the tumor microenvironment.
Biomark Res. 2024 Sep 3;12(1):96. doi: 10.1186/s40364-024-00646-1.
9
Synergistic Effects of Glutamine Deprivation and Metformin in Acute Myeloid Leukemia.
Curr Med Sci. 2024 Aug;44(4):799-808. doi: 10.1007/s11596-024-2913-z. Epub 2024 Aug 3.

本文引用的文献

1
mTOR complex 2 controls glycolytic metabolism in glioblastoma through FoxO acetylation and upregulation of c-Myc.
Cell Metab. 2013 Nov 5;18(5):726-39. doi: 10.1016/j.cmet.2013.09.013. Epub 2013 Oct 17.
2
The mTOR kinase inhibitors, CC214-1 and CC214-2, preferentially block the growth of EGFRvIII-activated glioblastomas.
Clin Cancer Res. 2013 Oct 15;19(20):5722-32. doi: 10.1158/1078-0432.CCR-13-0527. Epub 2013 Sep 12.
3
EGFR mutation-induced alternative splicing of Max contributes to growth of glycolytic tumors in brain cancer.
Cell Metab. 2013 Jun 4;17(6):1000-1008. doi: 10.1016/j.cmet.2013.04.013. Epub 2013 May 23.
4
The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4.
Cell. 2013 May 9;153(4):840-54. doi: 10.1016/j.cell.2013.04.023.
5
mTOR kinase structure, mechanism and regulation.
Nature. 2013 May 9;497(7448):217-23. doi: 10.1038/nature12122. Epub 2013 May 1.
6
GC/MS-based metabolomic analysis of cerebrospinal fluid (CSF) from glioma patients.
J Neurooncol. 2013 May;113(1):65-74. doi: 10.1007/s11060-013-1090-x. Epub 2013 Mar 1.
7
A proposed role for glutamine in cancer cell growth through acid resistance.
Cell Res. 2013 May;23(5):724-7. doi: 10.1038/cr.2013.15. Epub 2013 Jan 29.
8
Metabolic stress controls mTORC1 lysosomal localization and dimerization by regulating the TTT-RUVBL1/2 complex.
Mol Cell. 2013 Jan 10;49(1):172-85. doi: 10.1016/j.molcel.2012.10.003. Epub 2012 Nov 8.
10
Glutaminolysis activates Rag-mTORC1 signaling.
Mol Cell. 2012 Aug 10;47(3):349-58. doi: 10.1016/j.molcel.2012.05.043. Epub 2012 Jun 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验