Suppr超能文献

枯草芽孢杆菌中2-硫代尿苷生物合成的简化途径。

Abbreviated Pathway for Biosynthesis of 2-Thiouridine in Bacillus subtilis.

作者信息

Black Katherine A, Dos Santos Patricia C

机构信息

Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina, USA.

Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina, USA

出版信息

J Bacteriol. 2015 Jun;197(11):1952-62. doi: 10.1128/JB.02625-14. Epub 2015 Mar 30.

Abstract

UNLABELLED

The 2-thiouridine (s(2)U) modification of the wobble position in glutamate, glutamine, and lysine tRNA molecules serves to stabilize the anticodon structure, improving ribosomal binding and overall efficiency of the translational process. Biosynthesis of s(2)U in Escherichia coli requires a cysteine desulfurase (IscS), a thiouridylase (MnmA), and five intermediate sulfur-relay enzymes (TusABCDE). The E. coli MnmA adenylates and subsequently thiolates tRNA to form the s(2)U modification. Bacillus subtilis lacks IscS and the intermediate sulfur relay proteins, yet its genome contains a cysteine desulfurase gene, yrvO, directly adjacent to mnmA. The genomic synteny of yrvO and mnmA combined with the absence of the Tus proteins indicated a potential functionality of these proteins in s(2)U formation. Here, we provide evidence that the B. subtilis YrvO and MnmA are sufficient for s(2)U biosynthesis. A conditional B. subtilis knockout strain showed that s(2)U abundance correlates with MnmA expression, and in vivo complementation studies in E. coli IscS- or MnmA-deficient strains revealed the competency of these proteins in s(2)U biosynthesis. In vitro experiments demonstrated s(2)U formation by YrvO and MnmA, and kinetic analysis established a partnership between the B. subtilis proteins that is contingent upon the presence of ATP. Furthermore, we observed that the slow-growth phenotype of E. coli ΔiscS and ΔmnmA strains associated with s(2)U depletion is recovered by B. subtilis yrvO and mnmA. These results support the proposal that the involvement of a devoted cysteine desulfurase, YrvO, in s(2)U synthesis bypasses the need for a complex biosynthetic pathway by direct sulfur transfer to MnmA.

IMPORTANCE

The 2-thiouridine (s(2)U) modification of the wobble position in glutamate, glutamine, and lysine tRNA is conserved in all three domains of life and stabilizes the anticodon structure, thus guaranteeing fidelity in translation. The biosynthesis of s(2)U in Escherichia coli requires seven proteins: the cysteine desulfurase IscS, the thiouridylase MnmA, and five intermediate sulfur-relay enzymes (TusABCDE). Bacillus subtilis and most Gram-positive bacteria lack a complete set of biosynthetic components. Interestingly, the mnmA coding sequence is located adjacent to yrvO, encoding a cysteine desulfurase. In this work, we provide evidence that the B. subtilis YrvO is able to transfer sulfur directly to MnmA. Both proteins are sufficient for s(2)U biosynthesis in a pathway independent of the one used in E. coli.

摘要

未加标签

谷氨酸、谷氨酰胺和赖氨酸转运RNA(tRNA)分子摆动位点的2-硫代尿苷(s(2)U)修饰可稳定反密码子结构,提高核糖体结合能力以及翻译过程的整体效率。大肠杆菌中s(2)U的生物合成需要一种半胱氨酸脱硫酶(IscS)、一种硫代尿苷酶(MnmA)和五种中间硫传递酶(TusABCDE)。大肠杆菌的MnmA先使tRNA腺苷酸化,随后使其硫醇化以形成s(2)U修饰。枯草芽孢杆菌缺乏IscS和中间硫传递蛋白,但其基因组包含一个半胱氨酸脱硫酶基因yrvO,与mnmA直接相邻。yrvO和mnmA的基因组同线性以及Tus蛋白的缺失表明这些蛋白在s(2)U形成过程中具有潜在功能。在此,我们提供证据表明枯草芽孢杆菌的YrvO和MnmA足以进行s(2)U生物合成。一株枯草芽孢杆菌条件性敲除菌株表明,s(2)U丰度与MnmA表达相关,并且在大肠杆菌IscS或MnmA缺陷菌株中的体内互补研究揭示了这些蛋白在s(2)U生物合成中的能力。体外实验证明了YrvO和MnmA可形成s(2)U,动力学分析确定了枯草芽孢杆菌蛋白之间的合作关系,这种关系取决于ATP的存在。此外,我们观察到枯草芽孢杆菌的yrvO和mnmA可恢复大肠杆菌ΔiscS和ΔmnmA菌株因s(2)U缺失而出现的生长缓慢表型。这些结果支持了这样一种观点,即一种专门的半胱氨酸脱硫酶YrvO参与s(2)U合成,通过直接将硫转移给MnmA,绕过了对复杂生物合成途径的需求。

重要性

谷氨酸、谷氨酰胺和赖氨酸tRNA摆动位点的2-硫代尿苷(s(2)U)修饰在生命的三个域中均保守,可稳定反密码子结构,从而保证翻译的准确性。大肠杆菌中s(2)U生物合成需要七种蛋白:半胱氨酸脱硫酶IscS、硫代尿苷酶MnmA和五种中间硫传递酶(TusABCDE)。枯草芽孢杆菌和大多数革兰氏阳性菌缺乏完整的生物合成成分。有趣的是,mnmA编码序列与编码半胱氨酸脱硫酶的yrvO相邻。在这项研究中,我们提供证据表明枯草芽孢杆菌的YrvO能够将硫直接转移给MnmA。这两种蛋白足以在一条独立于大肠杆菌所使用途径的通路中进行s(2)U生物合成。

相似文献

1
Abbreviated Pathway for Biosynthesis of 2-Thiouridine in Bacillus subtilis.
J Bacteriol. 2015 Jun;197(11):1952-62. doi: 10.1128/JB.02625-14. Epub 2015 Mar 30.
2
Sulfur Availability Impacts Accumulation of the 2-Thiouridine tRNA Modification in Bacillus subtilis.
J Bacteriol. 2022 May 17;204(5):e0000922. doi: 10.1128/jb.00009-22. Epub 2022 Apr 25.
3
MnmA and IscS are required for in vitro 2-thiouridine biosynthesis in Escherichia coli.
Biochemistry. 2003 Feb 4;42(4):1109-17. doi: 10.1021/bi026536+.
4
Functional Analysis of Bacillus subtilis Genes Involved in the Biosynthesis of 4-Thiouridine in tRNA.
J Bacteriol. 2012 Sep;194(18):4933-40. doi: 10.1128/JB.00842-12. Epub 2012 Jul 6.
7
An ancient type of MnmA protein is an iron-sulfur cluster-dependent sulfurtransferase for tRNA anticodons.
RNA. 2020 Mar;26(3):240-250. doi: 10.1261/rna.072066.119. Epub 2019 Dec 4.
10
The iscS gene in Escherichia coli is required for the biosynthesis of 4-thiouridine, thiamin, and NAD.
J Biol Chem. 2000 Jun 30;275(26):20096-103. doi: 10.1074/jbc.M002680200.

引用本文的文献

1
tRNA modifying enzymes MnmE and MnmG are essential for apicoplast maintenance.
bioRxiv. 2025 Jan 6:2024.12.21.629855. doi: 10.1101/2024.12.21.629855.
2
Activation of Caged Functional RNAs by An Oxidative Transformation.
Chembiochem. 2025 Apr 14;26(8):e202401056. doi: 10.1002/cbic.202401056. Epub 2025 Jan 23.
3
2-Thiouridine formation in : a critical review.
J Bacteriol. 2025 Jan 31;207(1):e0042024. doi: 10.1128/jb.00420-24. Epub 2024 Dec 11.
4
Alternate routes to mnmsU synthesis in Gram-positive bacteria.
J Bacteriol. 2024 Apr 18;206(4):e0045223. doi: 10.1128/jb.00452-23. Epub 2024 Mar 29.
6
Identification of a novel 5-aminomethyl-2-thiouridine methyltransferase in tRNA modification.
Nucleic Acids Res. 2023 Feb 28;51(4):1971-1983. doi: 10.1093/nar/gkad048.
7
Genomic Plasticity of Acid-Tolerant Phenotypic Evolution in Acetobacter pasteurianus.
Appl Biochem Biotechnol. 2023 Oct;195(10):6003-6019. doi: 10.1007/s12010-023-04353-9. Epub 2023 Feb 4.
8
Sulfur Availability Impacts Accumulation of the 2-Thiouridine tRNA Modification in Bacillus subtilis.
J Bacteriol. 2022 May 17;204(5):e0000922. doi: 10.1128/jb.00009-22. Epub 2022 Apr 25.
9
Biosynthesis and Degradation of Sulfur Modifications in tRNAs.
Int J Mol Sci. 2021 Nov 3;22(21):11937. doi: 10.3390/ijms222111937.
10
Sulfur modification in natural RNA and therapeutic oligonucleotides.
RSC Chem Biol. 2021 Apr 27;2(4):990-1003. doi: 10.1039/d1cb00038a. eCollection 2021 Aug 5.

本文引用的文献

1
Shared-intermediates in the biosynthesis of thio-cofactors: Mechanism and functions of cysteine desulfurases and sulfur acceptors.
Biochim Biophys Acta. 2015 Jun;1853(6):1470-80. doi: 10.1016/j.bbamcr.2014.10.018. Epub 2014 Oct 27.
3
Role of tRNA modifications in human diseases.
Trends Mol Med. 2014 Jun;20(6):306-14. doi: 10.1016/j.molmed.2014.01.008. Epub 2014 Feb 25.
4
The putative tRNA 2-thiouridine synthetase Ncs6 is an essential sulfur carrier in Methanococcus maripaludis.
FEBS Lett. 2014 Mar 18;588(6):873-7. doi: 10.1016/j.febslet.2014.01.065. Epub 2014 Feb 11.
5
Fe-S cluster biogenesis in Gram-positive bacteria: SufU is a zinc-dependent sulfur transfer protein.
Biochemistry. 2014 Jan 14;53(1):152-60. doi: 10.1021/bi4011978. Epub 2013 Dec 23.
8
Altered 2-thiouridylation impairs mitochondrial translation in reversible infantile respiratory chain deficiency.
Hum Mol Genet. 2013 Nov 15;22(22):4602-15. doi: 10.1093/hmg/ddt309. Epub 2013 Jun 28.
9
Protected sulfur transfer reactions by the Escherichia coli Suf system.
Biochemistry. 2013 Jun 11;52(23):4089-96. doi: 10.1021/bi4001479. Epub 2013 May 30.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验