Karunakaran Denuja, Thrush A Brianne, Nguyen My-Anh, Richards Laura, Geoffrion Michele, Singaravelu Ragunath, Ramphos Eleni, Shangari Prakriti, Ouimet Mireille, Pezacki John P, Moore Kathryn J, Perisic Ljubica, Maegdefessel Lars, Hedin Ulf, Harper Mary-Ellen, Rayner Katey J
From the University of Ottawa Heart Institute, Ottawa, Ontario, Canada (D.K., M.-A.N., L.R., M.G., E.R., P.S., K.J.R.); Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada (A.B.T., M.-A.N., R.S., J.P.P., M.-E.H., K.J.R.); National Research Council of Canada, Ottawa, Ontario, Canada (R.S., J.P.P.); Marc and Ruti Bell Program for Vascular Biology and Disease, The Leon H. Charney Division of Cardiology, New York University School of Medicine (M.O., K.J.M.); and Department of Molecular Medicine and Surgery (L.P., U.H.) and Department of Medicine (L.M.), Karolinska Institute, Stockholm, Sweden.
Circ Res. 2015 Jul 17;117(3):266-78. doi: 10.1161/CIRCRESAHA.117.305624. Epub 2015 May 22.
Therapeutically targeting macrophage reverse cholesterol transport is a promising approach to treat atherosclerosis. Macrophage energy metabolism can significantly influence macrophage phenotype, but how this is controlled in foam cells is not known. Bioinformatic pathway analysis predicts that miR-33 represses a cluster of genes controlling cellular energy metabolism that may be important in macrophage cholesterol efflux.
We hypothesized that cellular energy status can influence cholesterol efflux from macrophages, and that miR-33 reduces cholesterol efflux via repression of mitochondrial energy metabolism pathways.
In this study, we demonstrated that macrophage cholesterol efflux is regulated by mitochondrial ATP production, and that miR-33 controls a network of genes that synchronize mitochondrial function. Inhibition of mitochondrial ATP synthase markedly reduces macrophage cholesterol efflux capacity, and anti-miR33 required fully functional mitochondria to enhance ABCA1-mediated cholesterol efflux. Specifically, anti-miR33 derepressed the novel target genes PGC-1α, PDK4, and SLC25A25 and boosted mitochondrial respiration and production of ATP. Treatment of atherosclerotic Apoe(-/-) mice with anti-miR33 oligonucleotides reduced aortic sinus lesion area compared with controls, despite no changes in high-density lipoprotein cholesterol or other circulating lipids. Expression of miR-33a/b was markedly increased in human carotid atherosclerotic plaques compared with normal arteries, and there was a concomitant decrease in mitochondrial regulatory genes PGC-1α, SLC25A25, NRF1, and TFAM, suggesting these genes are associated with advanced atherosclerosis in humans.
This study demonstrates that anti-miR33 therapy derepresses genes that enhance mitochondrial respiration and ATP production, which in conjunction with increased ABCA1 expression, works to promote macrophage cholesterol efflux and reduce atherosclerosis.
从治疗角度靶向巨噬细胞逆向胆固醇转运是治疗动脉粥样硬化的一种有前景的方法。巨噬细胞能量代谢可显著影响巨噬细胞表型,但在泡沫细胞中其调控机制尚不清楚。生物信息通路分析预测,miR-33可抑制一组控制细胞能量代谢的基因,这些基因可能在巨噬细胞胆固醇流出中起重要作用。
我们假设细胞能量状态可影响巨噬细胞的胆固醇流出,且miR-33通过抑制线粒体能量代谢途径降低胆固醇流出。
在本研究中,我们证明巨噬细胞胆固醇流出受线粒体ATP生成调控,且miR-33控制着一个使线粒体功能同步的基因网络。抑制线粒体ATP合酶可显著降低巨噬细胞胆固醇流出能力,抗miR-33需要功能完整的线粒体来增强ABCA1介导的胆固醇流出。具体而言,抗miR-33可解除对新靶基因PGC-1α、PDK4和SLC25A25的抑制,并增强线粒体呼吸和ATP生成。用抗miR-33寡核苷酸治疗动脉粥样硬化Apoe(-/-)小鼠,与对照组相比,主动脉窦病变面积减小,尽管高密度脂蛋白胆固醇或其他循环脂质无变化。与正常动脉相比,人颈动脉粥样硬化斑块中miR-33a/b的表达显著增加,同时线粒体调控基因PGC-1α、SLC25A25、NRF1和TFAM的表达下降,提示这些基因与人类晚期动脉粥样硬化有关。
本研究表明,抗miR-33治疗可解除对增强线粒体呼吸和ATP生成的基因的抑制,这与ABCA1表达增加共同作用,促进巨噬细胞胆固醇流出并减轻动脉粥样硬化。