Aubert Gregory, Martin Ola J, Horton Julie L, Lai Ling, Vega Rick B, Leone Teresa C, Koves Timothy, Gardell Stephen J, Krüger Marcus, Hoppel Charles L, Lewandowski E Douglas, Crawford Peter A, Muoio Deborah M, Kelly Daniel P
From Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (G.A., O.J.M., J.L.H., L.L., R.B.V., T.C.L., S.J.G., P.A.C., D.P.K.); Departments of Medicine, Pharmacology, and Cancer Biology, Duke University, Durham, NC (T.K., D.M.M.); CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany (M.K.); Departments of Pharmacology and Medicine, Case Western Reserve University, Cleveland, OH (C.L.H.); College of Medicine, University of Illinois at Chicago, Chicago, IL (E.D.L.); and Department of Medicine, Washington University School of Medicine, St. Louis, MO (P.A.C.).
Circulation. 2016 Feb 23;133(8):698-705. doi: 10.1161/CIRCULATIONAHA.115.017355. Epub 2016 Jan 27.
Significant evidence indicates that the failing heart is energy starved. During the development of heart failure, the capacity of the heart to utilize fatty acids, the chief fuel, is diminished. Identification of alternate pathways for myocardial fuel oxidation could unveil novel strategies to treat heart failure.
Quantitative mitochondrial proteomics was used to identify energy metabolic derangements that occur during the development of cardiac hypertrophy and heart failure in well-defined mouse models. As expected, the amounts of proteins involved in fatty acid utilization were downregulated in myocardial samples from the failing heart. Conversely, expression of β-hydroxybutyrate dehydrogenase 1, a key enzyme in the ketone oxidation pathway, was increased in the heart failure samples. Studies of relative oxidation in an isolated heart preparation using ex vivo nuclear magnetic resonance combined with targeted quantitative myocardial metabolomic profiling using mass spectrometry revealed that the hypertrophied and failing heart shifts to oxidizing ketone bodies as a fuel source in the context of reduced capacity to oxidize fatty acids. Distinct myocardial metabolomic signatures of ketone oxidation were identified.
These results indicate that the hypertrophied and failing heart shifts to ketone bodies as a significant fuel source for oxidative ATP production. Specific metabolite biosignatures of in vivo cardiac ketone utilization were identified. Future studies aimed at determining whether this fuel shift is adaptive or maladaptive could unveil new therapeutic strategies for heart failure.
大量证据表明,衰竭心脏存在能量匮乏。在心力衰竭发展过程中,心脏利用主要燃料脂肪酸的能力下降。确定心肌燃料氧化的替代途径可能会揭示治疗心力衰竭的新策略。
采用定量线粒体蛋白质组学方法,在明确的小鼠模型中鉴定心脏肥大和心力衰竭发展过程中发生的能量代谢紊乱。正如预期的那样,衰竭心脏的心肌样本中参与脂肪酸利用的蛋白质数量下调。相反,酮体氧化途径中的关键酶β-羟基丁酸脱氢酶1在心力衰竭样本中的表达增加。使用离体核磁共振对离体心脏制剂中的相对氧化进行研究,并结合使用质谱法进行靶向定量心肌代谢组学分析,结果显示,在脂肪酸氧化能力降低的情况下,肥大和衰竭的心脏转向将酮体作为燃料来源进行氧化。鉴定出了酮体氧化独特的心肌代谢组学特征。
这些结果表明,肥大和衰竭的心脏转向将酮体作为氧化ATP产生的重要燃料来源。确定了体内心脏酮体利用的特定代谢物生物特征。未来旨在确定这种燃料转换是适应性还是适应不良的研究可能会揭示心力衰竭的新治疗策略。