Suppr超能文献

利用视网膜眼底图像分析进行糖尿病视网膜病变的自动筛查与监测。

Automated Diabetic Retinopathy Screening and Monitoring Using Retinal Fundus Image Analysis.

作者信息

Bhaskaranand Malavika, Ramachandra Chaithanya, Bhat Sandeep, Cuadros Jorge, Nittala Muneeswar Gupta, Sadda SriniVas, Solanki Kaushal

机构信息

Eyenuk, Inc, Los Angeles, CA, USA

Eyenuk, Inc, Los Angeles, CA, USA.

出版信息

J Diabetes Sci Technol. 2016 Feb 16;10(2):254-61. doi: 10.1177/1932296816628546.

Abstract

BACKGROUND

Diabetic retinopathy (DR)-a common complication of diabetes-is the leading cause of vision loss among the working-age population in the western world. DR is largely asymptomatic, but if detected at early stages the progression to vision loss can be significantly slowed. With the increasing diabetic population there is an urgent need for automated DR screening and monitoring. To address this growing need, in this article we discuss an automated DR screening tool and extend it for automated estimation of microaneurysm (MA) turnover, a potential biomarker for DR risk.

METHODS

The DR screening tool automatically analyzes color retinal fundus images from a patient encounter for the various DR pathologies and collates the information from all the images belonging to a patient encounter to generate a patient-level screening recommendation. The MA turnover estimation tool aligns retinal images from multiple encounters of a patient, localizes MAs, and performs MA dynamics analysis to evaluate new, persistent, and disappeared lesion maps and estimate MA turnover rates.

RESULTS

The DR screening tool achieves 90% sensitivity at 63.2% specificity on a data set of 40 542 images from 5084 patient encounters obtained from the EyePACS telescreening system. On a subset of 7 longitudinal pairs the MA turnover estimation tool identifies new and disappeared MAs with 100% sensitivity and average false positives of 0.43 and 1.6 respectively.

CONCLUSIONS

The presented automated tools have the potential to address the growing need for DR screening and monitoring, thereby saving vision of millions of diabetic patients worldwide.

摘要

背景

糖尿病视网膜病变(DR)是糖尿病常见的并发症,是西方世界劳动年龄人群视力丧失的主要原因。DR大多无症状,但如果在早期阶段被检测到,视力丧失的进展可以显著减缓。随着糖尿病患者数量的增加,迫切需要自动化的DR筛查和监测。为了满足这一日益增长的需求,在本文中我们讨论了一种自动化的DR筛查工具,并对其进行扩展以自动估计微动脉瘤(MA)周转率,这是一种DR风险的潜在生物标志物。

方法

DR筛查工具自动分析患者就诊时的彩色眼底视网膜图像,以检测各种DR病变,并整理属于同一患者就诊的所有图像中的信息,以生成患者级别的筛查建议。MA周转率估计工具对患者多次就诊时的视网膜图像进行对齐,定位MA,并进行MA动态分析,以评估新的、持续存在的和消失的病变图,并估计MA周转率。

结果

在从EyePACS远程筛查系统获得的5084例患者就诊的40542张图像数据集上,DR筛查工具在特异性为63.2%时灵敏度达到90%。在7对纵向图像子集上,MA周转率估计工具识别新的和消失的MA的灵敏度为100%,平均假阳性率分别为0.43和1.6。

结论

所提出的自动化工具有可能满足对DR筛查和监测日益增长的需求,从而挽救全球数百万糖尿病患者的视力。

相似文献

1
Automated Diabetic Retinopathy Screening and Monitoring Using Retinal Fundus Image Analysis.
J Diabetes Sci Technol. 2016 Feb 16;10(2):254-61. doi: 10.1177/1932296816628546.
2
Automated lesion detectors in retinal fundus images.
Comput Biol Med. 2015 Nov 1;66:47-65. doi: 10.1016/j.compbiomed.2015.08.008. Epub 2015 Aug 18.
5
Diabetic retinopathy screening using digital non-mydriatic fundus photography and automated image analysis.
Acta Ophthalmol Scand. 2004 Dec;82(6):666-72. doi: 10.1111/j.1600-0420.2004.00350.x.
6
Automated Identification of Diabetic Retinopathy Using Deep Learning.
Ophthalmology. 2017 Jul;124(7):962-969. doi: 10.1016/j.ophtha.2017.02.008. Epub 2017 Mar 27.
9
Facilitating diabetic retinopathy screening using automated retinal image analysis in underresourced settings.
Diabet Med. 2021 Sep;38(9):e14582. doi: 10.1111/dme.14582. Epub 2021 Apr 17.
10
Automated diabetic retinopathy imaging in Indian eyes: a pilot study.
Indian J Ophthalmol. 2014 Dec;62(12):1121-4. doi: 10.4103/0301-4738.149129.

引用本文的文献

2
Ensemble deep learning and EfficientNet for accurate diagnosis of diabetic retinopathy.
Sci Rep. 2024 Dec 18;14(1):30554. doi: 10.1038/s41598-024-81132-4.
3
Effectiveness of artificial intelligence for diabetic retinopathy screening in community in Binh Dinh Province, Vietnam.
Taiwan J Ophthalmol. 2024 Sep 13;14(3):394-402. doi: 10.4103/tjo.TJO-D-23-00101. eCollection 2024 Jul-Sep.
4
Transparency in Artificial Intelligence Reporting in Ophthalmology-A Scoping Review.
Ophthalmol Sci. 2024 Jan 18;4(4):100471. doi: 10.1016/j.xops.2024.100471. eCollection 2024 Jul-Aug.
6
Hybrid adaptive deep learning classifier for early detection of diabetic retinopathy using optimal feature extraction and classification.
J Diabetes Metab Disord. 2023 Apr 14;22(1):881-895. doi: 10.1007/s40200-023-01220-6. eCollection 2023 Jun.
7
Artificial Intelligence for Diabetic Retinopathy Screening Using Color Retinal Photographs: From Development to Deployment.
Ophthalmol Ther. 2023 Jun;12(3):1419-1437. doi: 10.1007/s40123-023-00691-3. Epub 2023 Mar 2.
9
Test accuracy of artificial intelligence-based grading of fundus images in diabetic retinopathy screening: A systematic review.
J Med Screen. 2023 Sep;30(3):97-112. doi: 10.1177/09691413221144382. Epub 2023 Jan 9.

本文引用的文献

4
IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030.
Diabetes Res Clin Pract. 2011 Dec;94(3):311-21. doi: 10.1016/j.diabres.2011.10.029. Epub 2011 Nov 12.
5
EyePACS: an adaptable telemedicine system for diabetic retinopathy screening.
J Diabetes Sci Technol. 2009 May 1;3(3):509-16. doi: 10.1177/193229680900300315.
7
Retinopathy in diabetes.
Diabetes Care. 2004 Jan;27 Suppl 1:S84-7. doi: 10.2337/diacare.27.2007.s84.
8
Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales.
Ophthalmology. 2003 Sep;110(9):1677-82. doi: 10.1016/S0161-6420(03)00475-5.
9
An economic analysis of interventions for diabetes.
Diabetes Care. 2000 Mar;23(3):390-404. doi: 10.2337/diacare.23.3.390.
10
Disappearance and formation rates of microaneurysms in early diabetic retinopathy.
Br J Ophthalmol. 1996 Feb;80(2):135-9. doi: 10.1136/bjo.80.2.135.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验