Interdisciplinary Nanoscience Center, and ‡Center for DNA Nanotechnology at iNANO, Science and Technology, Aarhus University , Gustav Wieds Vej 1590-14, DK-8000 Aarhus C, Denmark.
Anal Chem. 2016 Aug 16;88(16):7984-90. doi: 10.1021/acs.analchem.6b01020. Epub 2016 Jul 29.
Charges of redox species can critically affect both the interfacial state of DNA and electrochemistry of DNA-conjugated redox labels and, as a result, the electroanalytical performance of those systems. Here, we show that the kinetics of electron transfer (ET) between the gold electrode and methylene blue (MB) label conjugated to a double-stranded (ds) DNA tethered to gold strongly depend on the charge of the MB molecule, and that affects the performance of genosensors exploiting MB-labeled hairpin DNA beacons. Positively charged MB binds to dsDNA via electrostatic and intercalative/groove binding, and this binding allows the DNA-mediated electrochemistry of MB intercalated into the duplex and, as a result, a complex mode of the electrochemical signal change upon hairpin hybridization to the target DNA, dominated by the "on-off" signal change mode at nanomolar levels of the analyzed DNA. When MB bears an additional carboxylic group, the negative charge provided by this group prevents intimate interactions between MB and DNA, and then the ET in duplexes is limited by the diffusion of the MB-conjugated dsDNA (the phenomenon first shown in Farjami , E. ; Clima , L. ; Gothelf , K. ; Ferapontova , E. E. Anal. Chem. 2011 , 83 , 1594 ) providing the robust "off-on" nanomolar DNA sensing. Those results can be extended to other intercalating redox probes and are of strategic importance for design and development of electrochemical hybridization sensors exploiting DNA nanoswitchable architectures.
氧化还原物种的电荷会极大地影响 DNA 的界面状态和与 DNA 键合的氧化还原标记物的电化学,进而影响这些系统的电分析性能。在这里,我们表明,金电极与连接到金上的双链 (ds) DNA 键合的亚甲基蓝 (MB) 标签之间的电子转移 (ET) 动力学强烈依赖于 MB 分子的电荷,这会影响利用 MB 标记发夹 DNA 信标的基因传感器的性能。带正电荷的 MB 通过静电相互作用和嵌入/沟槽结合与 dsDNA 结合,这种结合允许 MB 嵌入双链体中的 DNA 介导的电化学,并且由于发夹与目标 DNA 杂交时电化学信号变化的“开-关”信号变化模式占主导地位,因此导致了复杂的电化学信号变化模式,在分析 DNA 的纳摩尔水平下。当 MB 带有额外的羧酸基团时,该基团提供的负电荷可防止 MB 与 DNA 之间的紧密相互作用,然后 ET 在双链体中受到 MB 键合的 dsDNA 的扩散限制(首次在 Farjami, E. ; Clima, L. ; Gothelf, K. ; Ferapontova, E. E. Anal. Chem. 2011, 83, 1594 中显示),提供稳健的纳摩尔 DNA 感应“关-开”模式。这些结果可以扩展到其他嵌入氧化还原探针,并对设计和开发利用 DNA 纳米开关结构的电化学杂交传感器具有战略重要性。