Suppr超能文献

激素反应性和三阴性乳腺癌细胞对紫杉醇反应的代谢组学分析确定关键代谢差异

Metabolomics Analysis of Hormone-Responsive and Triple-Negative Breast Cancer Cell Responses to Paclitaxel Identify Key Metabolic Differences.

作者信息

Stewart Delisha A, Winnike Jason H, McRitchie Susan L, Clark Robert F, Pathmasiri Wimal W, Sumner Susan J

机构信息

NIH Eastern Regional Comprehensive Metabolomics Resource Core, RTI International , Research Triangle Park, North Carolina 27709, United States.

David H. Murdock Research Institute , Kannapolis, North Carolina 28081, United States.

出版信息

J Proteome Res. 2016 Sep 2;15(9):3225-40. doi: 10.1021/acs.jproteome.6b00430. Epub 2016 Aug 3.

Abstract

To date, no targeted therapies are available to treat triple negative breast cancer (TNBC), while other breast cancer subtypes are responsive to current therapeutic treatment. Metabolomics was conducted to reveal differences in two hormone receptor-negative TNBC cell lines and two hormone receptor-positive Luminal A cell lines. Studies were conducted in the presence and absence of paclitaxel (Taxol). TNBC cell lines had higher levels of amino acids, branched-chain amino acids, nucleotides, and nucleotide sugars and lower levels of proliferation-related metabolites like choline compared with Luminal A cell lines. In the presence of paclitaxel, each cell line showed unique metabolic responses, with some similarities by type. For example, in the Luminal A cell lines, levels of lactate and creatine decreased while certain choline metabolites and myo-inositol increased with paclitaxel. In the TNBC cell lines levels of glutamine, glutamate, and glutathione increased, whereas lysine, proline, and valine decreased in the presence of drug. Profiling secreted inflammatory cytokines in the conditioned media demonstrated a greater response to paclitaxel in the hormone-positive Luminal cells compared with a secretion profile that suggested greater drug resistance in the TNBC cells. The most significant differences distinguishing the cell types based on pathway enrichment analyses were related to amino acid, lipid and carbohydrate metabolism pathways, whereas several biological pathways were differentiated between the cell lines following treatment.

摘要

迄今为止,尚无靶向疗法可用于治疗三阴性乳腺癌(TNBC),而其他乳腺癌亚型对当前的治疗方法有反应。进行代谢组学研究以揭示两种激素受体阴性的TNBC细胞系和两种激素受体阳性的Luminal A细胞系之间的差异。研究在有和没有紫杉醇(泰素)的情况下进行。与Luminal A细胞系相比,TNBC细胞系具有更高水平的氨基酸、支链氨基酸、核苷酸和核苷酸糖,以及更低水平的与增殖相关的代谢物如胆碱。在紫杉醇存在的情况下,每个细胞系都表现出独特的代谢反应,按类型有一些相似之处。例如,在Luminal A细胞系中,乳酸和肌酸水平降低,而某些胆碱代谢物和肌醇在紫杉醇作用下增加。在TNBC细胞系中,谷氨酰胺、谷氨酸和谷胱甘肽水平增加,而赖氨酸、脯氨酸和缬氨酸在药物存在时减少。对条件培养基中分泌的炎性细胞因子进行分析表明,与TNBC细胞中显示出更大耐药性的分泌谱相比,激素阳性的Luminal细胞对紫杉醇的反应更大。基于通路富集分析区分细胞类型的最显著差异与氨基酸、脂质和碳水化合物代谢通路有关,而在处理后细胞系之间有几种生物学通路存在差异。

相似文献

1
6
A novel EGR-1 dependent mechanism for YB-1 modulation of paclitaxel response in a triple negative breast cancer cell line.
Int J Cancer. 2016 Sep 1;139(5):1157-70. doi: 10.1002/ijc.30137. Epub 2016 May 26.
7
JAK2 regulates paclitaxel resistance in triple negative breast cancers.
J Mol Med (Berl). 2021 Dec;99(12):1783-1795. doi: 10.1007/s00109-021-02138-3. Epub 2021 Oct 9.
8
Mapping Novel Metabolic Nodes Targeted by Anti-Cancer Drugs that Impair Triple-Negative Breast Cancer Pathogenicity.
ACS Chem Biol. 2017 Apr 21;12(4):1133-1140. doi: 10.1021/acschembio.6b01159. Epub 2017 Mar 8.
9
Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer.
Nat Med. 2016 Apr;22(4):427-32. doi: 10.1038/nm.4055. Epub 2016 Mar 7.
10
Metabolic characterization of triple negative breast cancer.
BMC Cancer. 2014 Dec 12;14:941. doi: 10.1186/1471-2407-14-941.

引用本文的文献

2
Metabolomics-Driven Biomarker Discovery for Breast Cancer Prognosis and Diagnosis.
Cells. 2024 Dec 25;14(1):5. doi: 10.3390/cells14010005.
4
Oxidative Stress in Breast Cancer: A Biochemical Map of Reactive Oxygen Species Production.
Curr Issues Mol Biol. 2024 May 13;46(5):4646-4687. doi: 10.3390/cimb46050282.
5
Advances in drug resistance of triple negative breast cancer caused by pregnane X receptor.
World J Clin Oncol. 2023 Sep 24;14(9):335-342. doi: 10.5306/wjco.v14.i9.335.
6
Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics.
Genes Dis. 2022 Mar 18;10(4):1367-1401. doi: 10.1016/j.gendis.2022.02.007. eCollection 2023 Jul.
7
Multi-omics analyses reveal ClpP activators disrupt essential mitochondrial pathways in triple-negative breast cancer.
Front Pharmacol. 2023 Mar 31;14:1136317. doi: 10.3389/fphar.2023.1136317. eCollection 2023.
8
The Metabolic Landscape of Breast Cancer and Its Therapeutic Implications.
Mol Diagn Ther. 2023 May;27(3):349-369. doi: 10.1007/s40291-023-00645-2. Epub 2023 Mar 29.
10
Inhibition of AXL and VEGF-A Has Improved Therapeutic Efficacy in Uterine Serous Cancer.
Cancers (Basel). 2021 Nov 23;13(23):5877. doi: 10.3390/cancers13235877.

本文引用的文献

1
RANK-ligand (RANKL) expression in young breast cancer patients and during pregnancy.
Breast Cancer Res. 2015 Feb 21;17:24. doi: 10.1186/s13058-015-0538-7.
3
ERK5 is a critical mediator of inflammation-driven cancer.
Cancer Res. 2015 Feb 15;75(4):742-53. doi: 10.1158/0008-5472.CAN-13-3043. Epub 2015 Feb 3.
4
Interleukin-6 as a therapeutic target.
Clin Cancer Res. 2015 Mar 15;21(6):1248-57. doi: 10.1158/1078-0432.CCR-14-2291. Epub 2015 Jan 14.
5
Autophagy regulator BECN1 suppresses mammary tumorigenesis driven by WNT1 activation and following parity.
Autophagy. 2014;10(11):2036-52. doi: 10.4161/auto.34398. Epub 2014 Oct 30.
8
Trabectedin in soft tissue sarcomas.
Future Oncol. 2014 Jun;10(8 Suppl):s1-5. doi: 10.2217/fon.14.117.
10
Green light for Janssen's IL-6 blocker.
Nat Biotechnol. 2014 Jul;32(7):607. doi: 10.1038/nbt0714-607b.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验