Suppr超能文献

细胞外钾离子通过氯离子依赖和非依赖机制快速控制天然远端曲管中氯化钠共转运体的磷酸化。

Extracellular K rapidly controls NaCl cotransporter phosphorylation in the native distal convoluted tubule by Cl -dependent and independent mechanisms.

作者信息

Penton David, Czogalla Jan, Wengi Agnieszka, Himmerkus Nina, Loffing-Cueni Dominique, Carrel Monique, Rajaram Renuga Devi, Staub Olivier, Bleich Markus, Schweda Frank, Loffing Johannes

机构信息

Institute of Anatomy, University of Zurich, Zurich, Switzerland.

Swiss National Centre of Competence in Research 'Kidney Control of Homeostasis', University of Zurich, Zurich, Switzerland.

出版信息

J Physiol. 2016 Nov 1;594(21):6319-6331. doi: 10.1113/JP272504. Epub 2016 Sep 11.

Abstract

KEY POINTS

High dietary potassium (K ) intake dephosphorylates and inactivates the NaCl cotransporter (NCC) in the renal distal convoluted tubule (DCT). Using several ex vivo models, we show that physiological changes in extracellular K , similar to those occurring after a K rich diet, are sufficient to promote a very rapid dephosphorylation of NCC in native DCT cells. Although the increase of NCC phosphorylation upon decreased extracellular K appears to depend on cellular Cl fluxes, the rapid NCC dephosphorylation in response to increased extracellular K is not Cl -dependent. The Cl -dependent pathway involves the SPAK/OSR1 kinases, whereas the Cl independent pathway may include additional signalling cascades.

ABSTRACT

A high dietary potassium (K ) intake causes a rapid dephosphorylation, and hence inactivation, of the thiazide-sensitive NaCl cotransporter (NCC) in the renal distal convoluted tubule (DCT). Based on experiments in heterologous expression systems, it was proposed that changes in extracellular K concentration ([K ] ) modulate NCC phosphorylation via a Cl -dependent modulation of the with no lysine (K) kinases (WNK)-STE20/SPS-1-44 related proline-alanine-rich protein kinase (SPAK)/oxidative stress-related kinase (OSR1) kinase pathway. We used the isolated perfused mouse kidney technique and ex vivo preparations of mouse kidney slices to test the physiological relevance of this model on native DCT. We demonstrate that NCC phosphorylation inversely correlates with [K ] , with the most prominent effects occurring around physiological plasma [K ]. Cellular Cl conductances and the kinases SPAK/OSR1 are involved in the phosphorylation of NCC under low [K ] . However, NCC dephosphorylation triggered by high [K ] is neither blocked by removing extracellular Cl , nor by the Cl channel blocker 4,4'-diisothiocyano-2,2'-stilbenedisulphonic acid. The response to [K ] on a low extracellular chloride concentration is also independent of significant changes in SPAK/OSR1 phosphorylation. Thus, in the native DCT, [K ] directly and rapidly controls NCC phosphorylation by Cl -dependent and independent pathways that involve the kinases SPAK/OSR1 and a yet unidentified additional signalling mechanism.

摘要

关键点

高膳食钾(K)摄入可使肾远曲小管(DCT)中的氯化钠共转运体(NCC)去磷酸化并使其失活。我们使用多种离体模型表明,细胞外钾的生理变化,类似于高钾饮食后发生的变化,足以促进天然DCT细胞中NCC的快速去磷酸化。尽管细胞外钾降低时NCC磷酸化的增加似乎依赖于细胞氯通量,但细胞外钾增加时NCC的快速去磷酸化并不依赖于氯。氯依赖性途径涉及SPAK/OSR1激酶,而氯非依赖性途径可能包括其他信号级联反应。

摘要

高膳食钾(K)摄入会导致肾远曲小管(DCT)中噻嗪类敏感的氯化钠共转运体(NCC)快速去磷酸化,从而失活。基于异源表达系统中的实验,有人提出细胞外钾浓度([K])的变化通过对无赖氨酸(K)激酶(WNK)-STE20/SPS-1-44相关富含脯氨酸-丙氨酸的蛋白激酶(SPAK)/氧化应激相关激酶(OSR1)激酶途径的氯依赖性调节来调节NCC磷酸化。我们使用分离灌注的小鼠肾脏技术和小鼠肾脏切片的离体标本,来测试该模型在天然DCT上的生理相关性。我们证明NCC磷酸化与[K]呈负相关,最显著的影响发生在生理血浆[K]左右。细胞氯电导和激酶SPAK/OSR1参与低[K]时NCC的磷酸化。然而,高[K]引发的NCC去磷酸化既不会因去除细胞外氯而被阻断,也不会被氯通道阻滞剂4,4'-二异硫氰基-2,2'-二苯乙烯二磺酸阻断。在低细胞外氯浓度下对[K]的反应也与SPAK/OSR1磷酸化的显著变化无关。因此,在天然DCT中,[K]通过涉及激酶SPAK/OSR1和尚未确定的其他信号机制的氯依赖性和非依赖性途径直接且快速地控制NCC磷酸化。

相似文献

2
SPAK and OSR1 play essential roles in potassium homeostasis through actions on the distal convoluted tubule.
J Physiol. 2016 Sep 1;594(17):4945-66. doi: 10.1113/JP272311. Epub 2016 May 29.
3
Roles of WNK4 and SPAK in K-mediated dephosphorylation of the NaCl cotransporter.
Am J Physiol Renal Physiol. 2021 May 1;320(5):F719-F733. doi: 10.1152/ajprenal.00459.2020. Epub 2021 Mar 15.
4
WNK bodies cluster WNK4 and SPAK/OSR1 to promote NCC activation in hypokalemia.
Am J Physiol Renal Physiol. 2020 Jan 1;318(1):F216-F228. doi: 10.1152/ajprenal.00232.2019. Epub 2019 Nov 18.
5
Deletion of KS-WNK1 promotes NCC activation by increasing WNK1/4 abundance.
Am J Physiol Renal Physiol. 2024 Sep 1;327(3):F373-F385. doi: 10.1152/ajprenal.00101.2024. Epub 2024 Jul 4.
6
Constitutively Active SPAK Causes Hyperkalemia by Activating NCC and Remodeling Distal Tubules.
J Am Soc Nephrol. 2017 Sep;28(9):2597-2606. doi: 10.1681/ASN.2016090948. Epub 2017 Apr 25.
7
SPAK isoforms and OSR1 regulate sodium-chloride co-transporters in a nephron-specific manner.
J Biol Chem. 2012 Nov 2;287(45):37673-90. doi: 10.1074/jbc.M112.402800. Epub 2012 Sep 12.
8
Kinase Scaffold Cab39 Is Necessary for Phospho-Activation of the Thiazide-Sensitive NCC.
Hypertension. 2024 Apr;81(4):801-810. doi: 10.1161/HYPERTENSIONAHA.123.22464. Epub 2024 Jan 23.
9
Modulation of NCC activity by low and high K(+) intake: insights into the signaling pathways involved.
Am J Physiol Renal Physiol. 2014 Jun 15;306(12):F1507-19. doi: 10.1152/ajprenal.00255.2013. Epub 2014 Apr 23.
10
Regulatory control of the Na-Cl co-transporter NCC and its therapeutic potential for hypertension.
Acta Pharm Sin B. 2021 May;11(5):1117-1128. doi: 10.1016/j.apsb.2020.09.009. Epub 2020 Sep 22.

引用本文的文献

1
Kidney-specific WNK1 amplifies kidney tubule responsiveness to potassium via WNK body condensates.
J Clin Invest. 2025 Jun 10;135(15). doi: 10.1172/JCI188792. eCollection 2025 Aug 1.
2
High chloride induces aldosterone resistance in the distal nephron.
Acta Physiol (Oxf). 2025 Jan;241(1):e14246. doi: 10.1111/apha.14246. Epub 2024 Oct 24.
4
Role of calcineurin in regulating renal potassium (K) excretion: Mechanisms of calcineurin inhibitor-induced hyperkalemia.
Acta Physiol (Oxf). 2024 Aug;240(8):e14189. doi: 10.1111/apha.14189. Epub 2024 Jun 11.
8
The Integral Role of Chloride & With-No-Lysine Kinases in Cell Volume Regulation & Hypertension.
Int J Nephrol Renovasc Dis. 2023 Aug 14;16:183-196. doi: 10.2147/IJNRD.S417766. eCollection 2023.
9
Thirty years of the NaCl cotransporter: from cloning to physiology and structure.
Am J Physiol Renal Physiol. 2023 Oct 1;325(4):F479-F490. doi: 10.1152/ajprenal.00114.2023. Epub 2023 Aug 10.
10
KLHL3-dependent WNK4 degradation affected by potassium through the neddylation and autophagy pathway.
BMC Nephrol. 2023 Jul 22;24(1):217. doi: 10.1186/s12882-023-03257-4.

本文引用的文献

2
Renal Deletion of 12 kDa FK506-Binding Protein Attenuates Tacrolimus-Induced Hypertension.
J Am Soc Nephrol. 2016 May;27(5):1456-64. doi: 10.1681/ASN.2015040466. Epub 2015 Oct 2.
3
Unique chloride-sensing properties of WNK4 permit the distal nephron to modulate potassium homeostasis.
Kidney Int. 2016 Jan;89(1):127-34. doi: 10.1038/ki.2015.289. Epub 2016 Jan 4.
4
Calcineurin and Sorting-Related Receptor with A-Type Repeats Interact to Regulate the Renal Na⁺-K⁺-2Cl⁻ Cotransporter.
J Am Soc Nephrol. 2016 Jan;27(1):107-19. doi: 10.1681/ASN.2014070728. Epub 2015 May 12.
5
Longitudinal effects of dietary sodium and potassium on blood pressure in adolescent girls.
JAMA Pediatr. 2015 Jun;169(6):560-8. doi: 10.1001/jamapediatrics.2015.0411.
6
SPAK-mediated NCC regulation in response to low-K+ diet.
Am J Physiol Renal Physiol. 2015 Apr 15;308(8):F923-31. doi: 10.1152/ajprenal.00388.2014. Epub 2015 Jan 28.
8
Dietary potassium and the renal control of salt balance and blood pressure.
Pflugers Arch. 2015 Mar;467(3):513-30. doi: 10.1007/s00424-014-1673-1. Epub 2015 Jan 6.
9
The Effect of WNK4 on the Na+-Cl- Cotransporter Is Modulated by Intracellular Chloride.
J Am Soc Nephrol. 2015 Aug;26(8):1781-6. doi: 10.1681/ASN.2014050470. Epub 2014 Dec 26.
10
Urinary sodium and potassium excretion, mortality, and cardiovascular events.
N Engl J Med. 2014 Aug 14;371(7):612-23. doi: 10.1056/NEJMoa1311889.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验