Penton David, Czogalla Jan, Wengi Agnieszka, Himmerkus Nina, Loffing-Cueni Dominique, Carrel Monique, Rajaram Renuga Devi, Staub Olivier, Bleich Markus, Schweda Frank, Loffing Johannes
Institute of Anatomy, University of Zurich, Zurich, Switzerland.
Swiss National Centre of Competence in Research 'Kidney Control of Homeostasis', University of Zurich, Zurich, Switzerland.
J Physiol. 2016 Nov 1;594(21):6319-6331. doi: 10.1113/JP272504. Epub 2016 Sep 11.
High dietary potassium (K ) intake dephosphorylates and inactivates the NaCl cotransporter (NCC) in the renal distal convoluted tubule (DCT). Using several ex vivo models, we show that physiological changes in extracellular K , similar to those occurring after a K rich diet, are sufficient to promote a very rapid dephosphorylation of NCC in native DCT cells. Although the increase of NCC phosphorylation upon decreased extracellular K appears to depend on cellular Cl fluxes, the rapid NCC dephosphorylation in response to increased extracellular K is not Cl -dependent. The Cl -dependent pathway involves the SPAK/OSR1 kinases, whereas the Cl independent pathway may include additional signalling cascades.
A high dietary potassium (K ) intake causes a rapid dephosphorylation, and hence inactivation, of the thiazide-sensitive NaCl cotransporter (NCC) in the renal distal convoluted tubule (DCT). Based on experiments in heterologous expression systems, it was proposed that changes in extracellular K concentration ([K ] ) modulate NCC phosphorylation via a Cl -dependent modulation of the with no lysine (K) kinases (WNK)-STE20/SPS-1-44 related proline-alanine-rich protein kinase (SPAK)/oxidative stress-related kinase (OSR1) kinase pathway. We used the isolated perfused mouse kidney technique and ex vivo preparations of mouse kidney slices to test the physiological relevance of this model on native DCT. We demonstrate that NCC phosphorylation inversely correlates with [K ] , with the most prominent effects occurring around physiological plasma [K ]. Cellular Cl conductances and the kinases SPAK/OSR1 are involved in the phosphorylation of NCC under low [K ] . However, NCC dephosphorylation triggered by high [K ] is neither blocked by removing extracellular Cl , nor by the Cl channel blocker 4,4'-diisothiocyano-2,2'-stilbenedisulphonic acid. The response to [K ] on a low extracellular chloride concentration is also independent of significant changes in SPAK/OSR1 phosphorylation. Thus, in the native DCT, [K ] directly and rapidly controls NCC phosphorylation by Cl -dependent and independent pathways that involve the kinases SPAK/OSR1 and a yet unidentified additional signalling mechanism.
高膳食钾(K)摄入可使肾远曲小管(DCT)中的氯化钠共转运体(NCC)去磷酸化并使其失活。我们使用多种离体模型表明,细胞外钾的生理变化,类似于高钾饮食后发生的变化,足以促进天然DCT细胞中NCC的快速去磷酸化。尽管细胞外钾降低时NCC磷酸化的增加似乎依赖于细胞氯通量,但细胞外钾增加时NCC的快速去磷酸化并不依赖于氯。氯依赖性途径涉及SPAK/OSR1激酶,而氯非依赖性途径可能包括其他信号级联反应。
高膳食钾(K)摄入会导致肾远曲小管(DCT)中噻嗪类敏感的氯化钠共转运体(NCC)快速去磷酸化,从而失活。基于异源表达系统中的实验,有人提出细胞外钾浓度([K])的变化通过对无赖氨酸(K)激酶(WNK)-STE20/SPS-1-44相关富含脯氨酸-丙氨酸的蛋白激酶(SPAK)/氧化应激相关激酶(OSR1)激酶途径的氯依赖性调节来调节NCC磷酸化。我们使用分离灌注的小鼠肾脏技术和小鼠肾脏切片的离体标本,来测试该模型在天然DCT上的生理相关性。我们证明NCC磷酸化与[K]呈负相关,最显著的影响发生在生理血浆[K]左右。细胞氯电导和激酶SPAK/OSR1参与低[K]时NCC的磷酸化。然而,高[K]引发的NCC去磷酸化既不会因去除细胞外氯而被阻断,也不会被氯通道阻滞剂4,4'-二异硫氰基-2,2'-二苯乙烯二磺酸阻断。在低细胞外氯浓度下对[K]的反应也与SPAK/OSR1磷酸化的显著变化无关。因此,在天然DCT中,[K]通过涉及激酶SPAK/OSR1和尚未确定的其他信号机制的氯依赖性和非依赖性途径直接且快速地控制NCC磷酸化。