Suppr超能文献

迈向自我再生抗菌聚合物表面

Towards Self-regenerating Antimicrobial Polymer Surfaces.

作者信息

Dorner Franziska, Boschert David, Schneider Alexandra, Hartleb Wibke, Al-Ahmad Ali, Lienkamp Karen

机构信息

Department of Microsystems Engineering (IMTEK), Albert-Ludwigs-Universität, Georges-Köhler-Allee 103, 79110 Freiburg, Germany and Freiburg Centre for Interactive Materials and Bioinspired Technologies (FIT) Albert-Ludwigs-Universität, Georges-Köhler-Allee 103, 79110 Freiburg, Germany.

Department of Operative Dentistry and Periodontology, Center for Dental Medicine of the Albert-Ludwigs-Universität Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany.

出版信息

ACS Macro Lett. 2015 Dec 15;4(12):1337-1340. doi: 10.1021/acsmacrolett.5b00686. Epub 2015 Nov 17.

Abstract

Regeneration of functional polymer surfaces after damage or contamination is an unresolved scientific challenge, and also of practical importance. In this proof-of-concept study, we present a method to regenerate a functional surface property using a polymer multi-layer architecture. This is exemplified using antimicrobially active surfaces. The idea is to shed the top layer of the polymer layer stack, like a reptile shedding its skin. The proof-of-concept stack consists of two antimicrobial layers and a degradable interlayer. Shedding of the top layer is enabled by degrading that interlayer. The shedding process was analyzed by quantitative fluorescence microscopy, ellipsometry, and FTIR spectroscopy. Antimicrobial assays revealed that the functionality of the emerging antimicrobial layer was fully retained after shedding.

摘要

受损或受污染后功能性聚合物表面的再生是一个尚未解决的科学挑战,同时也具有实际重要性。在这项概念验证研究中,我们展示了一种利用聚合物多层结构再生功能性表面特性的方法。这通过具有抗菌活性的表面进行举例说明。其思路是像爬行动物蜕皮一样去除聚合物层叠结构的顶层。概念验证堆叠结构由两个抗菌层和一个可降解中间层组成。通过降解该中间层来实现顶层的脱落。利用定量荧光显微镜、椭偏仪和傅里叶变换红外光谱对脱落过程进行了分析。抗菌试验表明,脱落后新出现的抗菌层的功能得以完全保留。

相似文献

1
Towards Self-regenerating Antimicrobial Polymer Surfaces.
ACS Macro Lett. 2015 Dec 15;4(12):1337-1340. doi: 10.1021/acsmacrolett.5b00686. Epub 2015 Nov 17.
3
5
Solvent-Free Fabrication of Self-Regenerating Antibacterial Surfaces Resisting Biofilm Formation.
ACS Appl Mater Interfaces. 2021 Mar 3;13(8):10553-10563. doi: 10.1021/acsami.0c20033. Epub 2021 Feb 22.
8
Novel Mechanism for Surface Layer Shedding and Regenerating in Bacteria Exposed to Metal-Contaminated Conditions.
Front Microbiol. 2019 Jan 15;9:3210. doi: 10.3389/fmicb.2018.03210. eCollection 2018.
9
Molting Materials: Restoring Superhydrophobicity after Severe Damage via Snakeskin-like Shedding.
Langmuir. 2017 May 16;33(19):4833-4839. doi: 10.1021/acs.langmuir.7b00814. Epub 2017 May 1.
10
Toward Infection-Resistant Surfaces: Achieving High Antimicrobial Peptide Potency by Modulating the Functionality of Polymer Brush and Peptide.
ACS Appl Mater Interfaces. 2015 Dec 30;7(51):28591-605. doi: 10.1021/acsami.5b10074. Epub 2015 Dec 21.

引用本文的文献

3
Non-delaminating Polymer Hydrogel Coatings via C,H-Insertion Crosslinking (CHic) - A Case Study of Poly(oxanorbornenes).
Macromol Chem Phys. 2018 Oct 16;219(23). doi: 10.1002/macp.201800397. eCollection 2018 Dec 5.
4
A Degradable and Antimicrobial Surface-attached Polymer Hydrogel.
Macromol Chem Phys. 2018 Jul 31;219(17). doi: 10.1002/macp.201800198. eCollection 2018 Sep 5.
5
Fluorescent ROMP Monomers and Copolymers for Biomedical Applications.
Macromol Chem Phys. 2017 Aug 21;218(21). doi: 10.1002/macp.201700273. eCollection 2017 Nov.
6
Solution-Mediated Modulation of Biofilm Formation by a Cationic Synthetic Polymer.
Antibiotics (Basel). 2019 May 10;8(2):61. doi: 10.3390/antibiotics8020061.
7
Structure-Property Relationships of Amine-rich and Membrane-Disruptive Poly(oxonorbornene)-Coated Gold Nanoparticles.
Langmuir. 2018 Apr 17;34(15):4614-4625. doi: 10.1021/acs.langmuir.7b04285. Epub 2018 Apr 6.
8
9
Antimicrobial Polymers in the Nano-World.
Nanomaterials (Basel). 2017 Feb 22;7(2):48. doi: 10.3390/nano7020048.

本文引用的文献

1
Dynamics of swollen gel layers anchored to solid surfaces.
Soft Matter. 2008 Jun 20;4(7):1443-1447. doi: 10.1039/b801468j.
3
Development of a standardized and safe airborne antibacterial assay, and its evaluation on antibacterial biomimetic model surfaces.
PLoS One. 2014 Oct 31;9(10):e111357. doi: 10.1371/journal.pone.0111357. eCollection 2014.
4
Nature-inspired antimicrobial polymers--assessment of their potential for biomedical applications.
PLoS One. 2013 Sep 9;8(9):e73812. doi: 10.1371/journal.pone.0073812. eCollection 2013.
5
Biomedical Applications of Biodegradable Polymers.
J Polym Sci B Polym Phys. 2011 Jun 15;49(12):832-864. doi: 10.1002/polb.22259.
6
Fast disinfecting antimicrobial surfaces.
Langmuir. 2009 Jan 20;25(2):1060-7. doi: 10.1021/la802953v.
7
Antimicrobial polymers prepared by ROMP with unprecedented selectivity: a molecular construction kit approach.
J Am Chem Soc. 2008 Jul 30;130(30):9836-43. doi: 10.1021/ja801662y. Epub 2008 Jul 1.
8
Insights in the antibacterial action of poly(methyloxazoline)s with a biocidal end group and varying satellite groups.
Biomacromolecules. 2008 Jul;9(7):1764-71. doi: 10.1021/bm7013944. Epub 2008 Jun 24.
9
Preparation, application and testing of permanent antibacterial and antiviral coatings.
Nat Protoc. 2007;2(10):2412-7. doi: 10.1038/nprot.2007.353.
10
Influence of satellite groups on telechelic antimicrobial functions of polyoxazolines.
Macromol Biosci. 2005 Feb 23;5(2):149-56. doi: 10.1002/mabi.200400169.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验