Suppr超能文献

胺富型和膜破坏型聚(降冰片烯)包覆金纳米粒子的结构-性能关系。

Structure-Property Relationships of Amine-rich and Membrane-Disruptive Poly(oxonorbornene)-Coated Gold Nanoparticles.

机构信息

Department of Chemistry and Biochemistry , University of Maryland Baltimore County , Baltimore , Maryland 21250 , United States.

Department of Microsystems Engineering (IMTEK) and Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT) , Albert-Ludwigs-Universität , Freiburg 79085 , Germany.

出版信息

Langmuir. 2018 Apr 17;34(15):4614-4625. doi: 10.1021/acs.langmuir.7b04285. Epub 2018 Apr 6.

Abstract

The article describes the interactions between poly (oxonorbornenes) (PONs)-coated gold nanoparticles (AuNPs) with phospholipid vesicles and shows that the strength of these interactions strongly depends on the molecular structure of PONs, specifically their amine/alkyl side chain ratio. PONs, which are a recently introduced class of cationic polyelectrolytes, can be systematically varied to control the amine/alkyl ratio and to explore how the chemical character of cationic polyelectrolytes affects their interactions and the interactions of their nanoparticle conjugates with model membranes. Our study shows that increasing the amine/alkyl ratio by copolymerization of diamine and 1:1 amine/butyl oxonorbornene monomers impacts the availability of PONs amine/ammonium functional groups to interact with phospholipid membranes, the PONs surface coverage on AuNPs, and the membrane disruption activity of free PONs and PONs-AuNPs. The study makes use of transmission electron microscopy, UV-vis spectroscopy, dynamic light scattering, thermogravimetric analysis, fluorescamine assay, ζ-potential measurements, and X-ray photoelectron spectroscopy measurements to characterize the PONs-AuNPs' size, size distribution, aggregation state, surface charge, and PONs surface coverage. The study also makes use of real-time fluorescence measurements of fluorescent liposomes before and during exposure to free PONs and PONs-AuNPs to determine the membrane disruption activity of free PONs and PONs-AuNPs. As commonly observed with cationic polyelectrolytes, both free PONs and PONs-AuNPs display significant membrane disruption activity. Under conditions where the amine/alkyl ratio in PONs maximizes PONs surface coverage, the membrane disruption activity of PONs-AuNPs is about 10-fold higher than the membrane disruption activity of the same free PONs. This is attributed to the increased local concentration of ammonium ions when PONs-AuNPs interact with the liposome membranes. In contrast, the hydrophobicity of amine-rich PONs, which are made for example from diamine oxonorbornene monomers, is significantly reduced. This leads to a significant reduction of PON surface coverage on AuNPs and in turn to a significant decrease in membrane disruption.

摘要

本文描述了聚(降冰片烯)(PONs)-包覆金纳米粒子(AuNPs)与磷脂囊泡之间的相互作用,并表明这些相互作用的强度强烈依赖于 PONs 的分子结构,特别是其胺/烷基侧链比。PONs 是最近引入的一类阳离子聚电解质,可以通过共聚来控制胺/烷基比,并探索阳离子聚电解质的化学性质如何影响它们的相互作用及其纳米粒子缀合物与模型膜的相互作用。我们的研究表明,通过二胺和 1:1 胺/丁基降冰片烯单体的共聚来增加胺/烷基比,会影响 PONs 胺/铵官能团与磷脂膜相互作用的可用性、PONs 在 AuNPs 上的表面覆盖率以及游离 PONs 和 PONs-AuNPs 的膜破坏活性。该研究利用透射电子显微镜、紫外-可见光谱、动态光散射、热重分析、荧光胺测定、ζ-电位测量和 X 射线光电子能谱测量来表征 PONs-AuNPs 的尺寸、尺寸分布、聚集状态、表面电荷和 PONs 表面覆盖率。该研究还利用荧光脂质体在暴露于游离 PONs 和 PONs-AuNPs 前后的实时荧光测量来确定游离 PONs 和 PONs-AuNPs 的膜破坏活性。与阳离子聚电解质一样,游离 PONs 和 PONs-AuNPs 都显示出显著的膜破坏活性。在 PONs 中胺/烷基比最大化 PONs 表面覆盖率的条件下,PONs-AuNPs 的膜破坏活性比相同游离 PONs 的膜破坏活性高约 10 倍。这归因于 PONs-AuNPs 与脂质体膜相互作用时铵离子的局部浓度增加。相比之下,胺丰富的 PONs 的疏水性(例如由二胺降冰片烯单体制成)显著降低。这导致 PONs 在 AuNPs 上的表面覆盖率显著降低,进而膜破坏显著减少。

相似文献

1
Structure-Property Relationships of Amine-rich and Membrane-Disruptive Poly(oxonorbornene)-Coated Gold Nanoparticles.
Langmuir. 2018 Apr 17;34(15):4614-4625. doi: 10.1021/acs.langmuir.7b04285. Epub 2018 Apr 6.
3
Biological synergy of greener gold nanoparticles by using Coleus aromaticus leaf extract.
Mater Sci Eng C Mater Biol Appl. 2019 Jun;99:202-210. doi: 10.1016/j.msec.2019.01.105. Epub 2019 Jan 25.
4
Aromaticity/Bulkiness of Surface Ligands to Promote the Interaction of Anionic Amphiphilic Gold Nanoparticles with Lipid Bilayers.
Langmuir. 2016 Feb 16;32(6):1601-10. doi: 10.1021/acs.langmuir.6b00035. Epub 2016 Feb 3.
5
Effect of PEGylation on the biological properties of cationic carbosilane dendronized gold nanoparticles.
Int J Pharm. 2020 Jan 5;573:118867. doi: 10.1016/j.ijpharm.2019.118867. Epub 2019 Nov 22.
7
Green synthesis of gold and silver nanoparticles from (industrial hemp) and their capacity for biofilm inhibition.
Int J Nanomedicine. 2018 Jun 21;13:3571-3591. doi: 10.2147/IJN.S157958. eCollection 2018.
8
The interplay between surface-functionalized gold nanoparticles and negatively charged lipid vesicles.
Phys Chem Chem Phys. 2021 Oct 27;23(41):23526-23536. doi: 10.1039/d1cp01903a.
9
Zeta-potential data reliability of gold nanoparticle biomolecular conjugates and its application in sensitive quantification of surface absorbed protein.
Colloids Surf B Biointerfaces. 2016 Dec 1;148:541-548. doi: 10.1016/j.colsurfb.2016.09.021. Epub 2016 Sep 23.

引用本文的文献

1
Poly(oxanorbornene)-Coated CdTe Quantum Dots as Antibacterial Agents.
ACS Appl Bio Mater. 2020 Feb 17;3(2):1097-1104. doi: 10.1021/acsabm.9b01045. Epub 2020 Jan 1.
2
Adverse Interactions of Luminescent Semiconductor Quantum Dots with Liposomes and .
ACS Appl Nano Mater. 2018 Sep 28;1(9):4788-4800. doi: 10.1021/acsanm.8b01000. Epub 2018 Aug 10.

本文引用的文献

2
A Simultaneously Antimicrobial, Protein-Repellent, and Cell-Compatible Polyzwitterion Network.
Biomacromolecules. 2017 Apr 10;18(4):1373-1386. doi: 10.1021/acs.biomac.7b00100. Epub 2017 Mar 24.
3
Towards Self-regenerating Antimicrobial Polymer Surfaces.
ACS Macro Lett. 2015 Dec 15;4(12):1337-1340. doi: 10.1021/acsmacrolett.5b00686. Epub 2015 Nov 17.
4
Surface Analysis of Gold Nanoparticles Functionalized with Thiol-Modified Glucose SAMs for Biosensor Applications.
Front Chem. 2016 Feb 29;4:8. doi: 10.3389/fchem.2016.00008. eCollection 2016.
5
Quantitative determination of ligand densities on nanomaterials by X-ray photoelectron spectroscopy.
ACS Appl Mater Interfaces. 2015 Jan 28;7(3):1720-5. doi: 10.1021/am507300x. Epub 2015 Jan 15.
6
Determination of nanoparticle surface coatings and nanoparticle purity using microscale thermogravimetric analysis.
Anal Chem. 2014 Feb 4;86(3):1478-84. doi: 10.1021/ac402888v. Epub 2014 Jan 17.
7
Nature-inspired antimicrobial polymers--assessment of their potential for biomedical applications.
PLoS One. 2013 Sep 9;8(9):e73812. doi: 10.1371/journal.pone.0073812. eCollection 2013.
8
Surface engineering of gold nanoparticles for in vitro siRNA delivery.
Nanoscale. 2012 Aug 21;4(16):5102-9. doi: 10.1039/c2nr31290e. Epub 2012 Jul 10.
9
Preparation of peptide-functionalized gold nanoparticles using one pot EDC/sulfo-NHS coupling.
Langmuir. 2011 Aug 16;27(16):10119-23. doi: 10.1021/la2022177. Epub 2011 Jul 14.
10
Toxicity and cellular uptake of gold nanoparticles: what we have learned so far?
J Nanopart Res. 2010 Sep;12(7):2313-2333. doi: 10.1007/s11051-010-9911-8. Epub 2010 Apr 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验