Department of Chemistry and Biochemistry , University of Maryland Baltimore County , Baltimore , Maryland 21250 , United States.
Department of Microsystems Engineering (IMTEK) and Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT) , Albert-Ludwigs-Universität , Freiburg 79085 , Germany.
Langmuir. 2018 Apr 17;34(15):4614-4625. doi: 10.1021/acs.langmuir.7b04285. Epub 2018 Apr 6.
The article describes the interactions between poly (oxonorbornenes) (PONs)-coated gold nanoparticles (AuNPs) with phospholipid vesicles and shows that the strength of these interactions strongly depends on the molecular structure of PONs, specifically their amine/alkyl side chain ratio. PONs, which are a recently introduced class of cationic polyelectrolytes, can be systematically varied to control the amine/alkyl ratio and to explore how the chemical character of cationic polyelectrolytes affects their interactions and the interactions of their nanoparticle conjugates with model membranes. Our study shows that increasing the amine/alkyl ratio by copolymerization of diamine and 1:1 amine/butyl oxonorbornene monomers impacts the availability of PONs amine/ammonium functional groups to interact with phospholipid membranes, the PONs surface coverage on AuNPs, and the membrane disruption activity of free PONs and PONs-AuNPs. The study makes use of transmission electron microscopy, UV-vis spectroscopy, dynamic light scattering, thermogravimetric analysis, fluorescamine assay, ζ-potential measurements, and X-ray photoelectron spectroscopy measurements to characterize the PONs-AuNPs' size, size distribution, aggregation state, surface charge, and PONs surface coverage. The study also makes use of real-time fluorescence measurements of fluorescent liposomes before and during exposure to free PONs and PONs-AuNPs to determine the membrane disruption activity of free PONs and PONs-AuNPs. As commonly observed with cationic polyelectrolytes, both free PONs and PONs-AuNPs display significant membrane disruption activity. Under conditions where the amine/alkyl ratio in PONs maximizes PONs surface coverage, the membrane disruption activity of PONs-AuNPs is about 10-fold higher than the membrane disruption activity of the same free PONs. This is attributed to the increased local concentration of ammonium ions when PONs-AuNPs interact with the liposome membranes. In contrast, the hydrophobicity of amine-rich PONs, which are made for example from diamine oxonorbornene monomers, is significantly reduced. This leads to a significant reduction of PON surface coverage on AuNPs and in turn to a significant decrease in membrane disruption.
本文描述了聚(降冰片烯)(PONs)-包覆金纳米粒子(AuNPs)与磷脂囊泡之间的相互作用,并表明这些相互作用的强度强烈依赖于 PONs 的分子结构,特别是其胺/烷基侧链比。PONs 是最近引入的一类阳离子聚电解质,可以通过共聚来控制胺/烷基比,并探索阳离子聚电解质的化学性质如何影响它们的相互作用及其纳米粒子缀合物与模型膜的相互作用。我们的研究表明,通过二胺和 1:1 胺/丁基降冰片烯单体的共聚来增加胺/烷基比,会影响 PONs 胺/铵官能团与磷脂膜相互作用的可用性、PONs 在 AuNPs 上的表面覆盖率以及游离 PONs 和 PONs-AuNPs 的膜破坏活性。该研究利用透射电子显微镜、紫外-可见光谱、动态光散射、热重分析、荧光胺测定、ζ-电位测量和 X 射线光电子能谱测量来表征 PONs-AuNPs 的尺寸、尺寸分布、聚集状态、表面电荷和 PONs 表面覆盖率。该研究还利用荧光脂质体在暴露于游离 PONs 和 PONs-AuNPs 前后的实时荧光测量来确定游离 PONs 和 PONs-AuNPs 的膜破坏活性。与阳离子聚电解质一样,游离 PONs 和 PONs-AuNPs 都显示出显著的膜破坏活性。在 PONs 中胺/烷基比最大化 PONs 表面覆盖率的条件下,PONs-AuNPs 的膜破坏活性比相同游离 PONs 的膜破坏活性高约 10 倍。这归因于 PONs-AuNPs 与脂质体膜相互作用时铵离子的局部浓度增加。相比之下,胺丰富的 PONs 的疏水性(例如由二胺降冰片烯单体制成)显著降低。这导致 PONs 在 AuNPs 上的表面覆盖率显著降低,进而膜破坏显著减少。