Suppr超能文献

发光半导体量子点与脂质体的不良相互作用以及…… (原文此处不完整)

Adverse Interactions of Luminescent Semiconductor Quantum Dots with Liposomes and .

作者信息

Williams Denise N, Pramanik Sunipa, Brown Richard P, Zhi Bo, McIntire Eileen, Hudson-Smith Natalie V, Haynes Christy L, Rosenzweig Zeev

机构信息

Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore 21250, Maryland, United States.

Department of Chemistry, University of Minnesota, Minneapolis 55455, Minnesota, United States.

出版信息

ACS Appl Nano Mater. 2018 Sep 28;1(9):4788-4800. doi: 10.1021/acsanm.8b01000. Epub 2018 Aug 10.

Abstract

Cadmium-containing luminescent quantum dots (QD) are increasingly used in display, bioimaging, and energy technologies; however, significant concerns have been raised about their potentially adverse impact on human health and the environment. This study makes use of a broad toolkit of analytical methods to investigate and increase our understanding of the interactions of luminescent cadmium-containing (CdSe) and cadmium-free (ZnSe) QD, with and without a passivating higher bandgap energy ZnS shell, with phospholipid vesicles (liposomes), which model bacterial membranes, and with MR-1, an environmentally relevant bacteria. A unique feature of this study is that all QD types have the same surface chemistry, being capped with uncharged poly(ethylene glycol) ligands. This enables focusing the study on the impact of the QD core on liposomes and bacterial cells. The study reveals that QD association with liposome and bacterial cell membranes is imperative for their adverse impact on liposomes and bacterial cells. The QD' concentration-dependent association with liposomes and bacterial cells destabilizes the membranes mechanically, which leads to membrane disruption and lysis in liposomes and to bacterial cell death. The study also shows that cadmium-containing QD exhibit a higher level of membrane disruption in bacterial cells than cadmium-free QD. ZnSe QD have low membrane impact, and coating them with a ZnS shell decreases their membrane disruption activity. In contrast, CdSe QD exhibit a high level of membrane impact, and coating them with a ZnS shell does not decrease, but in fact further increases, their membrane disruption activity. This behavior might be attributed to higher affinity and association of CdSe/ZnS QD with liposomes and bacterial cells and to a contribution of dissolved zinc ions from the ZnS shell to increased membrane disruption activity.

摘要

含镉发光量子点(QD)越来越多地应用于显示、生物成像和能源技术领域;然而,人们对其可能对人类健康和环境产生的不利影响表示严重关切。本研究运用了一系列广泛的分析方法,以调查并增进我们对含镉(CdSe)和无镉(ZnSe)发光量子点与磷脂囊泡(脂质体,模拟细菌膜)以及与环境相关细菌MR-1之间相互作用的理解。这些量子点有无钝化的更高带隙能量ZnS壳层。本研究的一个独特之处在于,所有类型的量子点都具有相同的表面化学性质,均由不带电荷的聚乙二醇配体封端。这使得研究能够聚焦于量子点核心对脂质体和细菌细胞的影响。研究表明,量子点与脂质体和细菌细胞膜的结合对于它们对脂质体和细菌细胞的不利影响至关重要。量子点与脂质体和细菌细胞的浓度依赖性结合会在机械上使膜不稳定,这会导致脂质体中的膜破裂和裂解以及细菌细胞死亡。研究还表明,含镉量子点在细菌细胞中表现出比无镉量子点更高程度的膜破坏。ZnSe量子点对膜的影响较小,用ZnS壳层包覆它们会降低其膜破坏活性。相比之下,CdSe量子点表现出较高的膜影响程度,用ZnS壳层包覆它们并不会降低,实际上反而会进一步增加其膜破坏活性。这种行为可能归因于CdSe/ZnS量子点与脂质体和细菌细胞的更高亲和力和结合,以及来自ZnS壳层的溶解锌离子对增加膜破坏活性的贡献。

相似文献

1
Adverse Interactions of Luminescent Semiconductor Quantum Dots with Liposomes and .
ACS Appl Nano Mater. 2018 Sep 28;1(9):4788-4800. doi: 10.1021/acsanm.8b01000. Epub 2018 Aug 10.
2
Effects of CdSe and CdSe/ZnS Core/Shell Quantum Dots on Singlet Oxygen Production and Cell Toxicity.
J Nanosci Nanotechnol. 2018 Mar 1;18(3):1568-1576. doi: 10.1166/jnn.2018.15305.
3
Biocompatible CdSe-ZnS core-shell quantum dots coated with hydrophilic polythiols.
Langmuir. 2009 Jun 16;25(12):7090-6. doi: 10.1021/la900148m.
6
Sensitization enhancement of europium in ZnSe/ZnS core/shell quantum dots induced by efficient energy transfer.
Luminescence. 2014 Dec;29(8):1095-101. doi: 10.1002/bio.2664. Epub 2014 Jun 5.
9
Hepatoma cell uptake of cationic multifluorescent quantum dot liposomes.
J Phys Chem B. 2009 Jun 4;113(22):7725-8. doi: 10.1021/jp9017458.
10
Investigation of biocompatible and protein sensitive highly luminescent quantum dots/nanocrystals of CdSe, CdSe/ZnS and CdSe/CdS.
Spectrochim Acta A Mol Biomol Spectrosc. 2017 May 15;179:201-210. doi: 10.1016/j.saa.2017.02.028. Epub 2017 Feb 16.

引用本文的文献

1
Colloidal stabilization of hydrophobic InSe 2D nanosheets in a model environmental aqueous solution and their impact on MR-1.
Environ Sci Nano. 2024 Feb 1;11(2):627-636. doi: 10.1039/d3en00382e. Epub 2023 Oct 31.
2
Hydroporphyrin-Doped Near-Infrared-Emitting Polymer Dots for Cellular Fluorescence Imaging.
ACS Appl Mater Interfaces. 2022 May 11;14(18):20790-20801. doi: 10.1021/acsami.2c02551. Epub 2022 Apr 22.
3
Anionic nanoparticle-induced perturbation to phospholipid membranes affects ion channel function.
Proc Natl Acad Sci U S A. 2020 Nov 10;117(45):27854-27861. doi: 10.1073/pnas.2004736117. Epub 2020 Oct 26.
4
Evaluation of the biocompatibility of the GSH-coated AgS quantum dots in vitro: a perfect example for the non-toxic optical probes.
Mol Biol Rep. 2020 Jun;47(6):4117-4129. doi: 10.1007/s11033-020-05522-3. Epub 2020 May 20.
5
Revisiting the cytotoxicity of quantum dots: an in-depth overview.
Biophys Rev. 2020 Jun;12(3):703-718. doi: 10.1007/s12551-020-00653-0. Epub 2020 Mar 5.
6
Synthesis of PEG-grafted boron doped Si nanocrystals.
J Chem Phys. 2019 Dec 7;151(21):211103. doi: 10.1063/1.5128608.

本文引用的文献

1
Structure-Property Relationships of Amine-rich and Membrane-Disruptive Poly(oxonorbornene)-Coated Gold Nanoparticles.
Langmuir. 2018 Apr 17;34(15):4614-4625. doi: 10.1021/acs.langmuir.7b04285. Epub 2018 Apr 6.
4
Probing the Cytotoxicity Of Semiconductor Quantum Dots.
Nano Lett. 2004 Jan 1;4(1):11-18. doi: 10.1021/nl0347334. Epub 2003 Dec 10.
5
6
Cadmium-containing quantum dots: properties, applications, and toxicity.
Appl Microbiol Biotechnol. 2017 Apr;101(7):2713-2733. doi: 10.1007/s00253-017-8140-9. Epub 2017 Mar 1.
8
Effects of Surface Charges on the Bactericide Activity of CdTe/ZnS Quantum Dots: A Cell Membrane Disruption Perspective.
Langmuir. 2017 Mar 7;33(9):2378-2386. doi: 10.1021/acs.langmuir.7b00173. Epub 2017 Feb 20.
9
New Generation Cadmium-Free Quantum Dots for Biophotonics and Nanomedicine.
Chem Rev. 2016 Oct 12;116(19):12234-12327. doi: 10.1021/acs.chemrev.6b00290. Epub 2016 Sep 22.
10
Hyperspectral imaging of nanoparticles in biological samples: Simultaneous visualization and elemental identification.
Microsc Res Tech. 2016 May;79(5):349-58. doi: 10.1002/jemt.22637. Epub 2016 Feb 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验