Suppr超能文献

可见光诱导电子转移引发自由基化学。

Free Radical Chemistry Enabled by Visible Light-Induced Electron Transfer.

机构信息

Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States.

出版信息

Acc Chem Res. 2016 Oct 18;49(10):2295-2306. doi: 10.1021/acs.accounts.6b00270. Epub 2016 Aug 16.

Abstract

Harnessing visible light as the driving force for chemical transformations generally offers a more environmentally friendly alternative compared with classical synthetic methodology. The transition metal-based photocatalysts commonly employed in photoredox catalysis absorb efficiently in the visible spectrum, unlike most organic substrates, allowing for orthogonal excitation. The subsequent excited states are both more reducing and more oxidizing than the ground state catalyst and are competitive with some of the more powerful single-electron oxidants or reductants available to organic chemists yet are simply accessed via irradiation. The benefits of this strategy have proven particularly useful in radical chemistry, a field that traditionally employs rather toxic and hazardous reagents to generate the desired intermediates. In this Account, we discuss our efforts to leverage visible light photoredox catalysis in radical-based bond-forming and bond-cleaving events for which few, if any, environmentally benign alternatives exist. Mechanistic investigations have driven our contributions in this field, for both facilitating desired transformations and offering new, unexpected opportunities. In fact, our total synthesis of (+)-gliocladin C was only possible upon elucidating the propensity for various trialkylamine additives to elicit a dual behavior as both a reductive quencher and a H-atom donor. Importantly, while natural product synthesis was central to our initial motivations to explore these photochemical processes, we have since demonstrated applicability within other subfields of chemistry, and our evaluation of flow technologies demonstrates the potential to translate these results from the bench to pilot scale. Our forays into photoredox catalysis began with fundamental methodology, providing a tin-free reductive dehalogenation that exchanged the gamut of hazardous reagents previously employed for such a transformation for visible light-mediated, ambient temperature conditions. Evolving from this work, a new avenue toward atom transfer radical addition (ATRA) chemistry was developed, enabling dual functionalization of both double and triple bonds. Importantly, we have also expanded our portfolio to target clinically relevant scaffolds. Photoredox catalysis proved effective in generating high value fluorinated alkyl radicals through the use of abundantly available starting materials, providing access to libraries of trifluoromethylated (hetero)arenes as well as intriguing gem-difluoro benzyl motifs via a novel photochemical radical Smiles rearrangement. Finally, we discuss a photochemical strategy toward sustainable lignin processing through selective C-O bond cleavage methodology. The collection of these efforts is meant to highlight the potential for visible light-mediated radical chemistry to impact a variety of industrial sectors.

摘要

利用可见光作为化学转化的驱动力通常比经典的合成方法更环保。与大多数有机底物不同,光氧化还原催化中常用的基于过渡金属的光催化剂在可见光谱中高效吸收,允许正交激发。随后的激发态比基态催化剂更具还原性和氧化性,并且与一些有机化学家可用的更强大的单电子氧化剂或还原剂竞争,但只需通过照射即可获得。这种策略的好处在自由基化学中尤为有用,该领域传统上使用相当有毒和危险的试剂来生成所需的中间体。在本报告中,我们讨论了我们利用可见光光氧化还原催化在基于自由基的键形成和键断裂反应中的努力,对于这些反应,如果存在任何环境友好的替代方法,也很少。我们在该领域的贡献是通过机械研究来推动的,既促进了所需的转化,又提供了新的、意想不到的机会。事实上,只有在阐明各种三烷基胺添加剂既有还原猝灭剂又有 H-原子供体的双重行为的倾向之后,我们才有可能完成 (+)-gliocladin C 的全合成。重要的是,虽然天然产物合成是我们最初探索这些光化学过程的动机的核心,但我们此后已经在化学的其他子领域中证明了其适用性,并且我们对流动技术的评估表明了将这些结果从实验室规模转化为中试规模的潜力。我们对光氧化还原催化的探索始于基本方法,提供了一种无锡的还原脱卤反应,用可见光介导的环境温度条件取代了以前用于这种转化的各种危险试剂。从这项工作中发展出一种新的原子转移自由基加成 (ATRA) 化学途径,能够对双键和三键进行双重官能化。重要的是,我们还扩大了我们的产品组合以针对具有临床相关性的支架。光氧化还原催化通过使用丰富的起始材料有效地生成高价值的氟化烷基自由基,通过一种新的光化学反应自由基 Smiles 重排,提供了大量三氟甲基化(杂)芳基和有趣的偕二氟苄基基序的文库。最后,我们讨论了通过选择性 C-O 键断裂方法实现可持续木质素处理的光化学策略。这些努力的集合旨在强调可见光介导的自由基化学对各种工业领域产生影响的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3626/5127252/b9b8fe076aad/ar-2016-00270b_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验