Wang Fangyuan, Qi Lei S
Sino-U.S. Center of Synthetic Biology, Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA; ChEM-H, Stanford University, Stanford, CA 94305, USA.
Trends Cell Biol. 2016 Nov;26(11):875-888. doi: 10.1016/j.tcb.2016.08.004. Epub 2016 Sep 3.
Recent advances in genome engineering are starting a revolution in biological research and translational applications. The clustered regularly interspaced short palindromic repeats (CRISPR)-associated RNA-guided endonuclease CRISPR associated protein 9 (Cas9) and its variants enable diverse manipulations of genome function. In this review, we describe the development of Cas9 tools for a variety of applications in cell biology research, including the study of functional genomics, the creation of transgenic animal models, and genomic imaging. Novel genome engineering methods offer a new avenue to understand the causality between the genome and phenotype, thus promising a fuller understanding of cell biology.
基因组工程的最新进展正在开启一场生物学研究和转化应用的革命。成簇规律间隔短回文重复序列(CRISPR)相关的RNA引导核酸内切酶CRISPR相关蛋白9(Cas9)及其变体能够对基因组功能进行多种操作。在本综述中,我们描述了Cas9工具在细胞生物学研究各种应用中的发展,包括功能基因组学研究、转基因动物模型的创建和基因组成像。新型基因组工程方法为理解基因组与表型之间的因果关系提供了一条新途径,从而有望更全面地理解细胞生物学。