Suppr超能文献

流感病毒血凝素抗体对Fc介导的效应功能的最佳激活需要两个接触点。

Optimal activation of Fc-mediated effector functions by influenza virus hemagglutinin antibodies requires two points of contact.

作者信息

Leon Paul E, He Wenqian, Mullarkey Caitlin E, Bailey Mark J, Miller Matthew S, Krammer Florian, Palese Peter, Tan Gene S

机构信息

Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029.

Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029.

出版信息

Proc Natl Acad Sci U S A. 2016 Oct 4;113(40):E5944-E5951. doi: 10.1073/pnas.1613225113. Epub 2016 Sep 19.

Abstract

Influenza virus strain-specific monoclonal antibodies (mAbs) provide protection independent of Fc gamma receptor (FcγR) engagement. In contrast, optimal in vivo protection achieved by broadly reactive mAbs requires Fc-FcγR engagement. Most strain-specific mAbs target the head domain of the viral hemagglutinin (HA), whereas broadly reactive mAbs typically recognize epitopes within the HA stalk. This observation has led to questions regarding the mechanism regulating the activation of Fc-dependent effector functions by broadly reactive antibodies. To dissect the molecular mechanism responsible for this dichotomy, we inserted the FLAG epitope into discrete locations on HAs. By characterizing the interactions of several FLAG-tagged HAs with a FLAG-specific antibody, we show that in addition to Fc-FcγR engagement mediated by the FLAG-specific antibody, a second intermolecular bridge between the receptor-binding region of the HA and sialic acid on effector cells is required for optimal activation. Inhibition of this second molecular bridge, through the use of an F(ab') or the mutation of the sialic acid-binding site, renders the Fc-FcγR interaction unable to optimally activate effector cells. Our findings indicate that broadly reactive mAbs require two molecular contacts to possibly stabilize the immunologic synapse and potently induce antibody-dependent cell-mediated antiviral responses: (i) the interaction between the Fc of a mAb bound to HA with the FcγR of the effector cell and (ii) the interaction between the HA and its sialic acid receptor on the effector cell. This concept might be broadly applicable for protective antibody responses to viral pathogens that have suitable receptors on effector cells.

摘要

流感病毒株特异性单克隆抗体(mAb)提供的保护作用不依赖于Fcγ受体(FcγR)的结合。相比之下,广谱反应性单克隆抗体在体内实现最佳保护需要Fc-FcγR结合。大多数株特异性单克隆抗体靶向病毒血凝素(HA)的头部结构域,而广谱反应性单克隆抗体通常识别HA柄部内的表位。这一观察结果引发了关于广谱反应性抗体调节Fc依赖性效应功能激活机制的问题。为了剖析造成这种二分法的分子机制,我们将FLAG表位插入到HA上的不同位置。通过表征几种带有FLAG标签的HA与FLAG特异性抗体的相互作用,我们发现,除了由FLAG特异性抗体介导的Fc-FcγR结合外,HA的受体结合区域与效应细胞上的唾液酸之间的第二个分子间桥对于最佳激活也是必需的。通过使用F(ab') 或唾液酸结合位点的突变来抑制这第二个分子桥,会使Fc-FcγR相互作用无法最佳激活效应细胞。我们的研究结果表明,广谱反应性单克隆抗体需要两个分子接触来可能稳定免疫突触并有效诱导抗体依赖性细胞介导的抗病毒反应:(i)与HA结合的单克隆抗体的Fc与效应细胞的FcγR之间的相互作用,以及(ii)HA与其在效应细胞上的唾液酸受体之间的相互作用。这一概念可能广泛适用于对效应细胞上具有合适受体的病毒病原体的保护性抗体反应。

相似文献

1
Optimal activation of Fc-mediated effector functions by influenza virus hemagglutinin antibodies requires two points of contact.
Proc Natl Acad Sci U S A. 2016 Oct 4;113(40):E5944-E5951. doi: 10.1073/pnas.1613225113. Epub 2016 Sep 19.
4
Epitope specificity plays a critical role in regulating antibody-dependent cell-mediated cytotoxicity against influenza A virus.
Proc Natl Acad Sci U S A. 2016 Oct 18;113(42):11931-11936. doi: 10.1073/pnas.1609316113. Epub 2016 Oct 3.
5
Broadly neutralizing anti-influenza antibodies require Fc receptor engagement for in vivo protection.
J Clin Invest. 2016 Feb;126(2):605-10. doi: 10.1172/JCI84428. Epub 2016 Jan 5.
8
HA Antibody-Mediated FcγRIIIa Activity Is Both Dependent on FcR Engagement and Interactions between HA and Sialic Acids.
Front Immunol. 2016 Sep 29;7:399. doi: 10.3389/fimmu.2016.00399. eCollection 2016.
10
Fc or not Fc; that is the question: Antibody Fc-receptor interactions are key to universal influenza vaccine design.
Hum Vaccin Immunother. 2017 Jun 3;13(6):1-9. doi: 10.1080/21645515.2017.1290018. Epub 2017 Mar 23.

引用本文的文献

4
Fc-FcγR interactions during infections: From neutralizing antibodies to antibody-dependent enhancement.
Immunol Rev. 2024 Nov;328(1):221-242. doi: 10.1111/imr.13393. Epub 2024 Sep 13.
5
7
Designed nanoparticles elicit cross-reactive antibody responses to conserved influenza virus hemagglutinin stem epitopes.
PLoS Pathog. 2023 Aug 28;19(8):e1011514. doi: 10.1371/journal.ppat.1011514. eCollection 2023 Aug.
9
A pan-influenza antibody inhibiting neuraminidase via receptor mimicry.
Nature. 2023 Jun;618(7965):590-597. doi: 10.1038/s41586-023-06136-y. Epub 2023 May 31.
10
Pre-existing Fc profiles shape the evolution of neutralizing antibody breadth following influenza vaccination.
Cell Rep Med. 2023 Mar 21;4(3):100975. doi: 10.1016/j.xcrm.2023.100975. Epub 2023 Mar 14.

本文引用的文献

4
Broadly neutralizing anti-influenza antibodies require Fc receptor engagement for in vivo protection.
J Clin Invest. 2016 Feb;126(2):605-10. doi: 10.1172/JCI84428. Epub 2016 Jan 5.
5
Respiratory Syncytial Virus Uses CX3CR1 as a Receptor on Primary Human Airway Epithelial Cultures.
PLoS Pathog. 2015 Dec 11;11(12):e1005318. doi: 10.1371/journal.ppat.1005318. eCollection 2015 Dec.
6
A stable trimeric influenza hemagglutinin stem as a broadly protective immunogen.
Science. 2015 Sep 18;349(6254):1301-6. doi: 10.1126/science.aac7263. Epub 2015 Aug 24.
7
Hemagglutinin-stem nanoparticles generate heterosubtypic influenza protection.
Nat Med. 2015 Sep;21(9):1065-70. doi: 10.1038/nm.3927. Epub 2015 Aug 24.
8
Fc-Receptor Interactions Regulate Both Cytotoxic and Immunomodulatory Therapeutic Antibody Effector Functions.
Cancer Immunol Res. 2015 Jul;3(7):704-13. doi: 10.1158/2326-6066.CIR-15-0120.
9
Vaccination with soluble headless hemagglutinin protects mice from challenge with divergent influenza viruses.
Vaccine. 2015 Jun 26;33(29):3314-21. doi: 10.1016/j.vaccine.2015.05.038. Epub 2015 May 28.
10
FcγR dependent mechanisms of cytotoxic, agonistic, and neutralizing antibody activities.
Trends Immunol. 2015 Jun;36(6):325-36. doi: 10.1016/j.it.2015.04.005. Epub 2015 May 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验