Melikian Maxime, Eluard Baptiste, Bertho Gildas, Baud Véronique, Evrard-Todeschi Nathalie
Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601-CNRS, Université Paris Descartes , Sorbonne Paris Cité, 45 rue des Saint-Pères, 75006, Paris, France.
NF-kB, Differentiation and Cancer, Université Paris Descartes , Sorbonne Paris Cité, 4 Avenue de l'Observatoire, 75006, Paris, France.
J Chem Inf Model. 2017 Feb 27;57(2):223-233. doi: 10.1021/acs.jcim.5b00409. Epub 2017 Jan 13.
NF-κB is a major transcription factor whose activation is triggered through two main activation pathways: the canonical pathway involving disruption of IκB-α/NF-κB complexes and the alternative pathway whose activation relies on the inducible proteolysis of the inhibitory protein p100. One central step controlling p100 processing consists in the interaction of the E3 ubiquitin ligase β-TrCP with p100, thereby leading to its ubiquitinylation and subsequent either complete degradation or partial proteolysis by the proteasome. However, the interaction mechanism between p100 and β-TrCP is still poorly defined. In this work, a diphosphorylated 21-mer p100 peptide model containing the phosphodegron motif was used to characterize the interaction with β-TrCP by NMR. In parallel, docking simulations were performed in order to obtain a model of the 21P-p100/β-TrCP complex. Saturation transfer difference (STD) experiments were performed in order to highlight the residues of p100 involved in the interaction with the β-TrCP protein. These results highlighted the importance of pSer and pSer residues in the interaction with β-TrCP and particularly the Tyr that fits inside the hydrophobe β-TrCP cavity with the Arg474 guanidinium group. Four other arginines, Arg285, Arg410, Arg431, and Arg521, were found essential in the stabilization of p100 on the β-TrCP surface. Importantly, the requirement for these five arginine residues of β-TrCP for the interaction with p100 was further confirmed in vivo, thereby validating the docking model through a biological approach.
核因子κB(NF-κB)是一种主要的转录因子,其激活通过两条主要激活途径触发:经典途径涉及IκB-α/NF-κB复合物的破坏,以及替代途径,其激活依赖于抑制蛋白p100的诱导性蛋白水解。控制p100加工的一个核心步骤是E3泛素连接酶β-TrCP与p100的相互作用,从而导致其泛素化,随后被蛋白酶体完全降解或部分蛋白水解。然而,p100与β-TrCP之间的相互作用机制仍不清楚。在这项工作中,使用含有磷酸化降解基序的双磷酸化21聚体p100肽模型通过核磁共振(NMR)来表征与β-TrCP的相互作用。同时,进行对接模拟以获得21P-p100/β-TrCP复合物的模型。进行饱和转移差异(STD)实验以突出p100中与β-TrCP蛋白相互作用的残基。这些结果突出了pSer和pSer残基在与β-TrCP相互作用中的重要性,特别是与Arg474胍基配合并位于疏水β-TrCP腔内的酪氨酸。发现其他四个精氨酸,即Arg285、Arg410、Arg431和Arg521,对于p100在β-TrCP表面的稳定至关重要。重要的是,体内进一步证实了β-TrCP的这五个精氨酸残基与p100相互作用的必要性,从而通过生物学方法验证了对接模型。