Suppr超能文献

上皮-间质转化、癌症干细胞与耐药性:机制联系及临床意义

EMT, CSCs, and drug resistance: the mechanistic link and clinical implications.

作者信息

Shibue Tsukasa, Weinberg Robert A

机构信息

Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, Massachusetts 02142, USA.

Ludwig Center for Molecular Oncology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.

出版信息

Nat Rev Clin Oncol. 2017 Oct;14(10):611-629. doi: 10.1038/nrclinonc.2017.44. Epub 2017 Apr 11.

Abstract

The success of anticancer therapy is usually limited by the development of drug resistance. Such acquired resistance is driven, in part, by intratumoural heterogeneity - that is, the phenotypic diversity of cancer cells co-inhabiting a single tumour mass. The introduction of the cancer stem cell (CSC) concept, which posits the presence of minor subpopulations of CSCs that are uniquely capable of seeding new tumours, has provided a framework for understanding one dimension of intratumoural heterogeneity. This concept, taken together with the identification of the epithelial-to-mesenchymal transition (EMT) programme as a critical regulator of the CSC phenotype, offers an opportunity to investigate the nature of intratumoural heterogeneity and a possible mechanistic basis for anticancer drug resistance. In fact, accumulating evidence indicates that conventional therapies often fail to eradicate carcinoma cells that have entered the CSC state via activation of the EMT programme, thereby permitting CSC-mediated clinical relapse. In this Review, we summarize our current understanding of the link between the EMT programme and the CSC state, and also discuss how this knowledge can contribute to improvements in clinical practice.

摘要

抗癌治疗的成功通常受到耐药性产生的限制。这种获得性耐药部分是由肿瘤内异质性驱动的,即共同存在于单个肿瘤块中的癌细胞的表型多样性。癌症干细胞(CSC)概念的提出,假定存在少量具有独特能力播种新肿瘤的CSC亚群,为理解肿瘤内异质性的一个维度提供了框架。这一概念,结合上皮-间质转化(EMT)程序作为CSC表型的关键调节因子的鉴定,为研究肿瘤内异质性的本质和抗癌药物耐药性的可能机制基础提供了机会。事实上,越来越多的证据表明,传统疗法往往无法根除通过激活EMT程序进入CSC状态的癌细胞,从而导致CSC介导的临床复发。在本综述中,我们总结了目前对EMT程序与CSC状态之间联系的理解,并讨论了这些知识如何有助于改善临床实践。

相似文献

1
EMT, CSCs, and drug resistance: the mechanistic link and clinical implications.
Nat Rev Clin Oncol. 2017 Oct;14(10):611-629. doi: 10.1038/nrclinonc.2017.44. Epub 2017 Apr 11.
2
Targeting microRNAs in epithelial-to-mesenchymal transition-induced cancer stem cells: therapeutic approaches in cancer.
Expert Opin Ther Targets. 2015 Feb;19(2):285-97. doi: 10.1517/14728222.2014.975794. Epub 2015 Jan 7.
3
Cancer stem cell (CSC) resistance drivers.
Life Sci. 2019 Oct 1;234:116781. doi: 10.1016/j.lfs.2019.116781. Epub 2019 Aug 17.
5
EMT, CTCs and CSCs in tumor relapse and drug-resistance.
Oncotarget. 2015 May 10;6(13):10697-711. doi: 10.18632/oncotarget.4037.
7
The epithelial-mesenchymal transition and cancer stem cells: functional and mechanistic links.
Curr Pharm Des. 2015;21(10):1279-91. doi: 10.2174/1381612821666141211115611.
8
Targeting Epithelial-Mesenchymal Transition (EMT) to Overcome Drug Resistance in Cancer.
Molecules. 2016 Jul 22;21(7):965. doi: 10.3390/molecules21070965.
9
The challenge of targeting cancer stem cells to halt metastasis.
Semin Cancer Biol. 2017 Jun;44:25-42. doi: 10.1016/j.semcancer.2017.03.003. Epub 2017 Mar 18.

引用本文的文献

2
Epithelial-Mesenchymal Transition in Cancer: Insights Into Therapeutic Targets and Clinical Implications.
MedComm (2020). 2025 Aug 29;6(9):e70333. doi: 10.1002/mco2.70333. eCollection 2025 Sep.
3
Loss of CD90 alters EMT-associated features and drug sensitivity in U-CH1 chordoma cells.
Naunyn Schmiedebergs Arch Pharmacol. 2025 Sep 1. doi: 10.1007/s00210-025-04547-4.
4
Application of artificial intelligence-based stemness index in cancer.
Front Oncol. 2025 Aug 13;15:1608712. doi: 10.3389/fonc.2025.1608712. eCollection 2025.
7
Hyperbaric Oxygen Regulates Tumor pH to Boost Copper-Doped Hydroxyethyl Starch Conjugate Nanoparticles Against Cancer Stem Cells.
Exploration (Beijing). 2025 Apr 3;5(4):e20240080. doi: 10.1002/EXP.20240080. eCollection 2025 Aug.

本文引用的文献

1
Integrin-β4 identifies cancer stem cell-enriched populations of partially mesenchymal carcinoma cells.
Proc Natl Acad Sci U S A. 2017 Mar 21;114(12):E2337-E2346. doi: 10.1073/pnas.1618298114. Epub 2017 Mar 7.
2
Snail1-dependent p53 repression regulates expansion and activity of tumour-initiating cells in breast cancer.
Nat Cell Biol. 2016 Nov;18(11):1221-1232. doi: 10.1038/ncb3425. Epub 2016 Oct 17.
3
Epigenetic control of adult stem cell function.
Nat Rev Mol Cell Biol. 2016 Oct;17(10):643-58. doi: 10.1038/nrm.2016.76. Epub 2016 Jul 13.
4
EMT: 2016.
Cell. 2016 Jun 30;166(1):21-45. doi: 10.1016/j.cell.2016.06.028.
5
Activation of PKA leads to mesenchymal-to-epithelial transition and loss of tumor-initiating ability.
Science. 2016 Mar 4;351(6277):aad3680. doi: 10.1126/science.aad3680.
6
The Nature of Myeloid-Derived Suppressor Cells in the Tumor Microenvironment.
Trends Immunol. 2016 Mar;37(3):208-220. doi: 10.1016/j.it.2016.01.004. Epub 2016 Feb 6.
7
Epithelial-mesenchymal transition: a new target in anticancer drug discovery.
Nat Rev Drug Discov. 2016 May;15(5):311-25. doi: 10.1038/nrd.2015.13. Epub 2016 Jan 29.
8
Neutrophils in the Tumor Microenvironment.
Trends Immunol. 2016 Jan;37(1):41-52. doi: 10.1016/j.it.2015.11.008. Epub 2015 Dec 14.
9
Mesenchymal Cancer Cell-Stroma Crosstalk Promotes Niche Activation, Epithelial Reversion, and Metastatic Colonization.
Cell Rep. 2015 Dec 22;13(11):2456-2469. doi: 10.1016/j.celrep.2015.11.025. Epub 2015 Dec 6.
10
Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance.
Nature. 2015 Nov 26;527(7579):472-6. doi: 10.1038/nature15748. Epub 2015 Nov 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验