Suppr超能文献

图形处理器上线性有限差分泊松-玻尔兹曼方法的加速

Acceleration of Linear Finite-Difference Poisson-Boltzmann Methods on Graphics Processing Units.

作者信息

Qi Ruxi, Botello-Smith Wesley M, Luo Ray

机构信息

Department of Molecular Biology and Biochemistry University of California , Irvine, California 92697-3900, United States.

出版信息

J Chem Theory Comput. 2017 Jul 11;13(7):3378-3387. doi: 10.1021/acs.jctc.7b00336. Epub 2017 Jun 7.

Abstract

Electrostatic interactions play crucial roles in biophysical processes such as protein folding and molecular recognition. Poisson-Boltzmann equation (PBE)-based models have emerged as widely used in modeling these important processes. Though great efforts have been put into developing efficient PBE numerical models, challenges still remain due to the high dimensionality of typical biomolecular systems. In this study, we implemented and analyzed commonly used linear PBE solvers for the ever-improving graphics processing units (GPU) for biomolecular simulations, including both standard and preconditioned conjugate gradient (CG) solvers with several alternative preconditioners. Our implementation utilizes the standard Nvidia CUDA libraries cuSPARSE, cuBLAS, and CUSP. Extensive tests show that good numerical accuracy can be achieved given that the single precision is often used for numerical applications on GPU platforms. The optimal GPU performance was observed with the Jacobi-preconditioned CG solver, with a significant speedup over standard CG solver on CPU in our diversified test cases. Our analysis further shows that different matrix storage formats also considerably affect the efficiency of different linear PBE solvers on GPU, with the diagonal format best suited for our standard finite-difference linear systems. Further efficiency may be possible with matrix-free operations and integrated grid stencil setup specifically tailored for the banded matrices in PBE-specific linear systems.

摘要

静电相互作用在诸如蛋白质折叠和分子识别等生物物理过程中起着至关重要的作用。基于泊松-玻尔兹曼方程(PBE)的模型已成为广泛用于模拟这些重要过程的工具。尽管在开发高效的PBE数值模型方面已经付出了巨大努力,但由于典型生物分子系统的高维度性,挑战仍然存在。在本研究中,我们针对不断改进的用于生物分子模拟的图形处理单元(GPU)实现并分析了常用的线性PBE求解器,包括标准共轭梯度(CG)求解器和带有几种替代预处理器的预处理共轭梯度求解器。我们的实现利用了标准的英伟达CUDA库cuSPARSE、cuBLAS和CUSP。广泛的测试表明,鉴于在GPU平台上的数值应用通常使用单精度,因此可以实现良好的数值精度。在我们的多种测试用例中,使用雅可比预处理的CG求解器观察到了最佳的GPU性能,与CPU上的标准CG求解器相比有显著加速。我们的分析进一步表明,不同的矩阵存储格式也会对GPU上不同线性PBE求解器的效率产生相当大的影响,对角格式最适合我们的标准有限差分线性系统。对于无矩阵运算以及专门为PBE特定线性系统中的带状矩阵量身定制的集成网格模板设置,可能会进一步提高效率。

相似文献

1
Acceleration of Linear Finite-Difference Poisson-Boltzmann Methods on Graphics Processing Units.
J Chem Theory Comput. 2017 Jul 11;13(7):3378-3387. doi: 10.1021/acs.jctc.7b00336. Epub 2017 Jun 7.
2
Robustness and Efficiency of Poisson-Boltzmann Modeling on Graphics Processing Units.
J Chem Inf Model. 2019 Jan 28;59(1):409-420. doi: 10.1021/acs.jcim.8b00761. Epub 2018 Dec 31.
3
Improved Poisson-Boltzmann Methods for High-Performance Computing.
J Chem Theory Comput. 2019 Nov 12;15(11):6190-6202. doi: 10.1021/acs.jctc.9b00602. Epub 2019 Sep 30.
4
Assessment of linear finite-difference Poisson-Boltzmann solvers.
J Comput Chem. 2010 Jun;31(8):1689-98. doi: 10.1002/jcc.21456.
5
A Fast and Robust Poisson-Boltzmann Solver Based on Adaptive Cartesian Grids.
J Chem Theory Comput. 2011 May 10;7(5):1524-1540. doi: 10.1021/ct1006983.
7
An accelerated nonlocal Poisson-Boltzmann equation solver for electrostatics of biomolecule.
Int J Numer Method Biomed Eng. 2018 Nov;34(11):e3129. doi: 10.1002/cnm.3129. Epub 2018 Aug 21.
8
On removal of charge singularity in Poisson-Boltzmann equation.
J Chem Phys. 2009 Apr 14;130(14):145101. doi: 10.1063/1.3099708.
9
Newton-Raphson preconditioner for Krylov type solvers on GPU devices.
Springerplus. 2016 Jun 21;5(1):788. doi: 10.1186/s40064-016-2346-7. eCollection 2016.
10
Use of general purpose graphics processing units with MODFLOW.
Ground Water. 2013 Nov-Dec;51(6):833-46. doi: 10.1111/gwat.12004. Epub 2013 Jan 2.

引用本文的文献

1
AmberTools.
J Chem Inf Model. 2023 Oct 23;63(20):6183-6191. doi: 10.1021/acs.jcim.3c01153. Epub 2023 Oct 8.
2
Interactions between carbon nanotubes and external structures of SARS-CoV-2 using molecular docking and molecular dynamics.
J Mol Struct. 2023 Aug 15;1286:135604. doi: 10.1016/j.molstruc.2023.135604. Epub 2023 Apr 18.
3
Machine-Learned Molecular Surface and Its Application to Implicit Solvent Simulations.
J Chem Theory Comput. 2021 Oct 12;17(10):6214-6224. doi: 10.1021/acs.jctc.1c00492. Epub 2021 Sep 13.
4
Estimating the Roles of Protonation and Electronic Polarization in Absolute Binding Affinity Simulations.
J Chem Theory Comput. 2021 Apr 13;17(4):2541-2555. doi: 10.1021/acs.jctc.0c01305. Epub 2021 Mar 25.
5
Improved Poisson-Boltzmann Methods for High-Performance Computing.
J Chem Theory Comput. 2019 Nov 12;15(11):6190-6202. doi: 10.1021/acs.jctc.9b00602. Epub 2019 Sep 30.
6
Heterogeneous Dielectric Implicit Membrane Model for the Calculation of MMPBSA Binding Free Energies.
J Chem Inf Model. 2019 Jun 24;59(6):3041-3056. doi: 10.1021/acs.jcim.9b00363. Epub 2019 Jun 13.
7
An efficient second-order poisson-boltzmann method.
J Comput Chem. 2019 May 5;40(12):1257-1269. doi: 10.1002/jcc.25783. Epub 2019 Feb 18.
8
Robustness and Efficiency of Poisson-Boltzmann Modeling on Graphics Processing Units.
J Chem Inf Model. 2019 Jan 28;59(1):409-420. doi: 10.1021/acs.jcim.8b00761. Epub 2018 Dec 31.
9
Recent Developments and Applications of the MMPBSA Method.
Front Mol Biosci. 2018 Jan 10;4:87. doi: 10.3389/fmolb.2017.00087. eCollection 2017.

本文引用的文献

1
Quantum Chemistry on Graphical Processing Units. 1. Strategies for Two-Electron Integral Evaluation.
J Chem Theory Comput. 2008 Feb;4(2):222-31. doi: 10.1021/ct700268q.
2
Computations of Absolute Solvation Free Energies of Small Molecules Using Explicit and Implicit Solvent Model.
J Chem Theory Comput. 2009 Apr 14;5(4):919-30. doi: 10.1021/ct800445x. Epub 2009 Mar 24.
3
New Multithreaded Hybrid CPU/GPU Approach to Hartree-Fock.
J Chem Theory Comput. 2012 Nov 13;8(11):4166-76. doi: 10.1021/ct300526w. Epub 2012 Sep 28.
4
Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald.
J Chem Theory Comput. 2013 Sep 10;9(9):3878-88. doi: 10.1021/ct400314y. Epub 2013 Aug 20.
5
Generating Efficient Quantum Chemistry Codes for Novel Architectures.
J Chem Theory Comput. 2013 Jan 8;9(1):213-21. doi: 10.1021/ct300321a. Epub 2012 Nov 12.
6
Applications of MMPBSA to Membrane Proteins I: Efficient Numerical Solutions of Periodic Poisson-Boltzmann Equation.
J Chem Inf Model. 2015 Oct 26;55(10):2187-99. doi: 10.1021/acs.jcim.5b00341. Epub 2015 Oct 5.
7
A combined MPI-CUDA parallel solution of linear and nonlinear Poisson-Boltzmann equation.
Biomed Res Int. 2014;2014:560987. doi: 10.1155/2014/560987. Epub 2014 Jun 12.
8
On-the-fly Numerical Surface Integration for Finite-Difference Poisson-Boltzmann Methods.
J Chem Theory Comput. 2011 Nov 1;7(11):3608-3619. doi: 10.1021/ct200389p.
9
A revised density function for molecular surface definition in continuum solvent models.
J Chem Theory Comput. 2010 Apr 13;6(4):1157-1169. doi: 10.1021/ct900318u.
10
Performance of Nonlinear Finite-Difference Poisson-Boltzmann Solvers.
J Chem Theory Comput. 2010 Jan 12;6(1):203-211. doi: 10.1021/ct900381r.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验