Qi Ruxi, Botello-Smith Wesley M, Luo Ray
Department of Molecular Biology and Biochemistry University of California , Irvine, California 92697-3900, United States.
J Chem Theory Comput. 2017 Jul 11;13(7):3378-3387. doi: 10.1021/acs.jctc.7b00336. Epub 2017 Jun 7.
Electrostatic interactions play crucial roles in biophysical processes such as protein folding and molecular recognition. Poisson-Boltzmann equation (PBE)-based models have emerged as widely used in modeling these important processes. Though great efforts have been put into developing efficient PBE numerical models, challenges still remain due to the high dimensionality of typical biomolecular systems. In this study, we implemented and analyzed commonly used linear PBE solvers for the ever-improving graphics processing units (GPU) for biomolecular simulations, including both standard and preconditioned conjugate gradient (CG) solvers with several alternative preconditioners. Our implementation utilizes the standard Nvidia CUDA libraries cuSPARSE, cuBLAS, and CUSP. Extensive tests show that good numerical accuracy can be achieved given that the single precision is often used for numerical applications on GPU platforms. The optimal GPU performance was observed with the Jacobi-preconditioned CG solver, with a significant speedup over standard CG solver on CPU in our diversified test cases. Our analysis further shows that different matrix storage formats also considerably affect the efficiency of different linear PBE solvers on GPU, with the diagonal format best suited for our standard finite-difference linear systems. Further efficiency may be possible with matrix-free operations and integrated grid stencil setup specifically tailored for the banded matrices in PBE-specific linear systems.
静电相互作用在诸如蛋白质折叠和分子识别等生物物理过程中起着至关重要的作用。基于泊松-玻尔兹曼方程(PBE)的模型已成为广泛用于模拟这些重要过程的工具。尽管在开发高效的PBE数值模型方面已经付出了巨大努力,但由于典型生物分子系统的高维度性,挑战仍然存在。在本研究中,我们针对不断改进的用于生物分子模拟的图形处理单元(GPU)实现并分析了常用的线性PBE求解器,包括标准共轭梯度(CG)求解器和带有几种替代预处理器的预处理共轭梯度求解器。我们的实现利用了标准的英伟达CUDA库cuSPARSE、cuBLAS和CUSP。广泛的测试表明,鉴于在GPU平台上的数值应用通常使用单精度,因此可以实现良好的数值精度。在我们的多种测试用例中,使用雅可比预处理的CG求解器观察到了最佳的GPU性能,与CPU上的标准CG求解器相比有显著加速。我们的分析进一步表明,不同的矩阵存储格式也会对GPU上不同线性PBE求解器的效率产生相当大的影响,对角格式最适合我们的标准有限差分线性系统。对于无矩阵运算以及专门为PBE特定线性系统中的带状矩阵量身定制的集成网格模板设置,可能会进一步提高效率。