Suppr超能文献

电子穿梭抗生素通过调节细胞中二鸟苷酸(c-di-GMP)的水平来构建细菌群落。

Electron-shuttling antibiotics structure bacterial communities by modulating cellular levels of c-di-GMP.

机构信息

Department of Biological Sciences, Columbia University, New York, NY 10027.

Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742.

出版信息

Proc Natl Acad Sci U S A. 2017 Jun 27;114(26):E5236-E5245. doi: 10.1073/pnas.1700264114. Epub 2017 Jun 12.

Abstract

Diverse organisms secrete redox-active antibiotics, which can be used as extracellular electron shuttles by resistant microbes. Shuttle-mediated metabolism can support survival when substrates are available not locally but rather at a distance. Such conditions arise in multicellular communities, where the formation of chemical gradients leads to resource limitation for cells at depth. In the pathogenic bacterium PA14, antibiotics called phenazines act as oxidants to balance the intracellular redox state of cells in anoxic biofilm subzones. PA14 colony biofilms show a profound morphogenic response to phenazines resulting from electron acceptor-dependent inhibition of ECM production. This effect is reminiscent of the developmental responses of some eukaryotic systems to redox control, but for bacterial systems its mechanistic basis has not been well defined. Here, we identify the regulatory protein RmcA and show that it links redox conditions to PA14 colony morphogenesis by modulating levels of bis-(3',5')-cyclic-dimeric-guanosine (c-di-GMP), a second messenger that stimulates matrix production, in response to phenazine availability. RmcA contains four Per-Arnt-Sim (PAS) domains and domains with the potential to catalyze the synthesis and degradation of c-di-GMP. Our results suggest that phenazine production modulates RmcA activity such that the protein degrades c-di-GMP and thereby inhibits matrix production during oxidizing conditions. RmcA thus forms a mechanistic link between cellular redox sensing and community morphogenesis analogous to the functions performed by PAS-domain-containing regulatory proteins found in complex eukaryotes.

摘要

不同的生物体分泌氧化还原活性抗生素,这些抗生素可以作为抵抗微生物的细胞外电子穿梭体。当基质在远处而不是局部可用时,穿梭介导的代谢可以支持生存。这种情况出现在多细胞群落中,其中化学梯度的形成导致深处细胞的资源限制。在致病菌 PA14 中,被称为吩嗪的抗生素充当氧化剂,以平衡缺氧生物膜亚区中细胞的细胞内氧化还原状态。PA14 菌落生物膜对吩嗪表现出深刻的形态响应,这是由于电子受体依赖性 ECM 产生抑制所致。这种效应让人联想到一些真核系统对氧化还原控制的发育反应,但对于细菌系统,其机制基础尚未得到很好的定义。在这里,我们确定了调节蛋白 RmcA,并表明它通过调节 bis-(3',5')-cyclic-dimeric-guanosine (c-di-GMP) 的水平来将氧化还原条件与 PA14 菌落形态发生联系,c-di-GMP 是一种刺激基质产生的第二信使,对吩嗪的可用性作出反应。RmcA 包含四个 Per-Arnt-Sim (PAS) 结构域和具有催化 c-di-GMP 合成和降解潜力的结构域。我们的结果表明,吩嗪的产生调节 RmcA 的活性,使得该蛋白降解 c-di-GMP,从而在氧化条件下抑制基质的产生。因此,RmcA 在细胞氧化还原感应和群落形态发生之间形成了类似于复杂真核生物中发现的 PAS 结构域包含调节蛋白的功能的机制联系。

相似文献

1
Electron-shuttling antibiotics structure bacterial communities by modulating cellular levels of c-di-GMP.
Proc Natl Acad Sci U S A. 2017 Jun 27;114(26):E5236-E5245. doi: 10.1073/pnas.1700264114. Epub 2017 Jun 12.
3
4
Uses c-di-GMP Phosphodiesterases RmcA and MorA To Regulate Biofilm Maintenance.
mBio. 2021 Feb 2;12(1):e03384-20. doi: 10.1128/mBio.03384-20.
6
Pseudomonas aeruginosa PumA acts on an endogenous phenazine to promote self-resistance.
Microbiology (Reading). 2018 May;164(5):790-800. doi: 10.1099/mic.0.000657. Epub 2018 Apr 9.
8
Bis-(3'-5')-cyclic dimeric GMP regulates antimicrobial peptide resistance in Pseudomonas aeruginosa.
Antimicrob Agents Chemother. 2013 May;57(5):2066-75. doi: 10.1128/AAC.02499-12. Epub 2013 Feb 12.
9
Mechanistic insights into c-di-GMP-dependent control of the biofilm regulator FleQ from Pseudomonas aeruginosa.
Proc Natl Acad Sci U S A. 2016 Jan 12;113(2):E209-18. doi: 10.1073/pnas.1523148113. Epub 2015 Dec 28.
10
Cyclic Di-GMP Signaling Contributes to Pseudomonas aeruginosa-Mediated Catheter-Associated Urinary Tract Infection.
J Bacteriol. 2015 Jul 20;198(1):91-7. doi: 10.1128/JB.00410-15. Print 2016 Jan 1.

引用本文的文献

1
(p)ppGpp imposes graded transcriptional changes to impair motility and promote antibiotic tolerance in biofilms.
NPJ Biofilms Microbiomes. 2025 Aug 1;11(1):148. doi: 10.1038/s41522-025-00795-7.
3
A biomedical perspective of pyocyanin from Pseudomonas aeruginosa: its applications and challenges.
World J Microbiol Biotechnol. 2024 Feb 10;40(3):90. doi: 10.1007/s11274-024-03889-0.
4
Cellular arrangement impacts metabolic activity and antibiotic tolerance in Pseudomonas aeruginosa biofilms.
PLoS Biol. 2024 Feb 1;22(2):e3002205. doi: 10.1371/journal.pbio.3002205. eCollection 2024 Feb.
5
Spatial heterogeneity in biofilm metabolism elicited by local control of phenazine methylation.
Proc Natl Acad Sci U S A. 2023 Oct 24;120(43):e2313208120. doi: 10.1073/pnas.2313208120. Epub 2023 Oct 17.
6
Bacterial respiratory inhibition triggers dispersal of biofilms.
Appl Environ Microbiol. 2023 Oct 31;89(10):e0110123. doi: 10.1128/aem.01101-23. Epub 2023 Sep 20.
7
Cell arrangement impacts metabolic activity and antibiotic tolerance in biofilms.
bioRxiv. 2023 Aug 28:2023.06.20.545666. doi: 10.1101/2023.06.20.545666.
8
"Sharing the matrix" - a cooperative strategy for survival in Salmonella enterica serovar Typhimurium.
BMC Microbiol. 2023 Aug 23;23(1):230. doi: 10.1186/s12866-023-02972-0.
9
The phosphodiesterase RmcA contributes to the adaptation of Pseudomonas putida to l-arginine.
FEMS Microbiol Lett. 2023 Jan 17;370. doi: 10.1093/femsle/fnad077.
10
An anti-biofilm cyclic peptide targets a secreted aminopeptidase from P. aeruginosa.
Nat Chem Biol. 2023 Sep;19(9):1158-1166. doi: 10.1038/s41589-023-01373-8. Epub 2023 Jun 29.

本文引用的文献

1
The Pseudomonas aeruginosa efflux pump MexGHI-OpmD transports a natural phenazine that controls gene expression and biofilm development.
Proc Natl Acad Sci U S A. 2016 Jun 21;113(25):E3538-47. doi: 10.1073/pnas.1600424113. Epub 2016 Jun 6.
2
Extracellular electron transfer systems fuel cellulose oxidative degradation.
Science. 2016 May 27;352(6289):1098-101. doi: 10.1126/science.aaf3165. Epub 2016 Apr 28.
3
Oxygen-dependent regulation of c-di-GMP synthesis by SadC controls alginate production in Pseudomonas aeruginosa.
Environ Microbiol. 2016 Oct;18(10):3390-3402. doi: 10.1111/1462-2920.13208. Epub 2016 Feb 4.
4
c-di-GMP signalling and the regulation of developmental transitions in streptomycetes.
Nat Rev Microbiol. 2015 Dec;13(12):749-60. doi: 10.1038/nrmicro3546. Epub 2015 Oct 26.
5
Pel is a cationic exopolysaccharide that cross-links extracellular DNA in the Pseudomonas aeruginosa biofilm matrix.
Proc Natl Acad Sci U S A. 2015 Sep 8;112(36):11353-8. doi: 10.1073/pnas.1503058112. Epub 2015 Aug 26.
6
Oligoribonuclease is the primary degradative enzyme for pGpG in Pseudomonas aeruginosa that is required for cyclic-di-GMP turnover.
Proc Natl Acad Sci U S A. 2015 Sep 8;112(36):E5048-57. doi: 10.1073/pnas.1507245112. Epub 2015 Aug 24.
7
Membrane-anchored MucR mediates nitrate-dependent regulation of alginate production in Pseudomonas aeruginosa.
Appl Microbiol Biotechnol. 2015 Sep;99(17):7253-65. doi: 10.1007/s00253-015-6591-4. Epub 2015 Apr 29.
8
The diguanylate cyclase SadC is a central player in Gac/Rsm-mediated biofilm formation in Pseudomonas aeruginosa.
J Bacteriol. 2014 Dec;196(23):4081-8. doi: 10.1128/JB.01850-14. Epub 2014 Sep 15.
9
AhR sensing of bacterial pigments regulates antibacterial defence.
Nature. 2014 Aug 28;512(7515):387-92. doi: 10.1038/nature13684. Epub 2014 Aug 13.
10
Extraction and measurement of NAD(P)(+) and NAD(P)H.
Methods Mol Biol. 2014;1149:311-23. doi: 10.1007/978-1-4939-0473-0_26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验