Suppr超能文献

现有药物通过靶向NS2B-NS3相互作用作为寨卡病毒的广谱强效抑制剂。

Existing drugs as broad-spectrum and potent inhibitors for Zika virus by targeting NS2B-NS3 interaction.

作者信息

Li Zhong, Brecher Matthew, Deng Yong-Qiang, Zhang Jing, Sakamuru Srilatha, Liu Binbin, Huang Ruili, Koetzner Cheri A, Allen Christina A, Jones Susan A, Chen Haiying, Zhang Na-Na, Tian Min, Gao Fengshan, Lin Qishan, Banavali Nilesh, Zhou Jia, Boles Nathan, Xia Menghang, Kramer Laura D, Qin Cheng-Feng, Li Hongmin

机构信息

Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA.

Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.

出版信息

Cell Res. 2017 Aug;27(8):1046-1064. doi: 10.1038/cr.2017.88. Epub 2017 Jul 7.

Abstract

Recent outbreaks of Zika virus (ZIKV) highlight an urgent need for therapeutics. The protease complex NS2B-NS3 plays essential roles during flaviviral polyprotein processing, and thus represents an attractive drug target. Here, we developed a split luciferase complementation-based high-throughput screening assay to identify orthosteric inhibitors that directly target flavivirus NS2B-NS3 interactions. By screening a total of 2 816 approved and investigational drugs, we identified three potent candidates, temoporfin, niclosamide, and nitazoxanide, as flavivirus NS2B-NS3 interaction inhibitors with nanomolar potencies. Significantly, the most potent compound, temoporfin, not only inhibited ZIKV replication in human placental and neural progenitor cells, but also prevented ZIKV-induced viremia and mortality in mouse models. Structural docking suggests that temoporfin potentially binds NS3 pockets that hold critical NS2B residues, thus inhibiting flaviviral polyprotein processing in a non-competitive manner. As these drugs have already been approved for clinical use in other indications either in the USA or other countries, they represent promising and easily developed therapies for the management of infections by ZIKV and other flaviviruses.

摘要

近期寨卡病毒(ZIKV)的爆发凸显了对治疗方法的迫切需求。蛋白酶复合物NS2B - NS3在黄病毒多聚蛋白加工过程中发挥着重要作用,因此是一个有吸引力的药物靶点。在此,我们开发了一种基于分裂荧光素酶互补的高通量筛选测定法,以鉴定直接靶向黄病毒NS2B - NS3相互作用的正构抑制剂。通过总共筛选2816种已批准和正在研究的药物,我们鉴定出三种强效候选药物,替莫泊芬、氯硝柳胺和硝唑尼特,作为具有纳摩尔效力的黄病毒NS2B - NS3相互作用抑制剂。值得注意的是,最有效的化合物替莫泊芬不仅抑制了寨卡病毒在人胎盘和神经祖细胞中的复制,还预防了寨卡病毒在小鼠模型中引起的病毒血症和死亡。结构对接表明,替莫泊芬可能结合容纳关键NS2B残基的NS3口袋,从而以非竞争性方式抑制黄病毒多聚蛋白加工。由于这些药物在美国或其他国家已被批准用于其他适应症的临床治疗,它们是治疗寨卡病毒和其他黄病毒感染的有前景且易于开发的治疗方法。

相似文献

1
Existing drugs as broad-spectrum and potent inhibitors for Zika virus by targeting NS2B-NS3 interaction.
Cell Res. 2017 Aug;27(8):1046-1064. doi: 10.1038/cr.2017.88. Epub 2017 Jul 7.
3
Erythrosin B is a potent and broad-spectrum orthosteric inhibitor of the flavivirus NS2B-NS3 protease.
Antiviral Res. 2018 Feb;150:217-225. doi: 10.1016/j.antiviral.2017.12.018. Epub 2017 Dec 27.
4
Development of NS2B-NS3 protease inhibitor that impairs Zika virus replication.
Virus Res. 2023 May;329:199092. doi: 10.1016/j.virusres.2023.199092. Epub 2023 Apr 5.
7
Structural Insights into the Inhibition of Zika Virus NS2B-NS3 Protease by a Small-Molecule Inhibitor.
Structure. 2018 Apr 3;26(4):555-564.e3. doi: 10.1016/j.str.2018.02.005. Epub 2018 Mar 8.
10
A conformational switch high-throughput screening assay and allosteric inhibition of the flavivirus NS2B-NS3 protease.
PLoS Pathog. 2017 May 25;13(5):e1006411. doi: 10.1371/journal.ppat.1006411. eCollection 2017 May.

引用本文的文献

2
Eltrombopag, an FDA-approved drug, inhibits dengue virus type 2 by targeting NS2B-NS3 protease.
Virol Sin. 2025 Jun;40(3):439-450. doi: 10.1016/j.virs.2025.05.009. Epub 2025 May 28.
6
An Overview of Zika Virus and Zika Virus Induced Neuropathies.
Int J Mol Sci. 2024 Dec 24;26(1):47. doi: 10.3390/ijms26010047.
8
RNA-binding protein HuR regulates the transition of septic AKI to CKD by modulating CD147.
Clin Sci (Lond). 2025 Jan 15;139(1):69-84. doi: 10.1042/CS20241756.
9
Tracking flaviviral protease conformational dynamics by tuning single-molecule nanopore tweezers.
Biophys J. 2025 Jan 7;124(1):145-157. doi: 10.1016/j.bpj.2024.11.017. Epub 2024 Nov 22.

本文引用的文献

1
Recurrent Potent Human Neutralizing Antibodies to Zika Virus in Brazil and Mexico.
Cell. 2017 May 4;169(4):597-609.e11. doi: 10.1016/j.cell.2017.04.024.
2
Ophthalmic Manifestations of Congenital Zika Syndrome in Colombia and Venezuela.
JAMA Ophthalmol. 2017 May 1;135(5):440-445. doi: 10.1001/jamaophthalmol.2017.0561.
3
Zika Virus infection of rhesus macaques leads to viral persistence in multiple tissues.
PLoS Pathog. 2017 Mar 9;13(3):e1006219. doi: 10.1371/journal.ppat.1006219. eCollection 2017 Mar.
4
Prolonged Zika Virus Viremia during Pregnancy.
N Engl J Med. 2016 Dec 29;375(26):2611-2613. doi: 10.1056/NEJMc1607580. Epub 2016 Dec 7.
5
Crystal structure of unlinked NS2B-NS3 protease from Zika virus.
Science. 2016 Dec 23;354(6319):1597-1600. doi: 10.1126/science.aai9309. Epub 2016 Dec 8.
6
Zika Virus Causes Testis Damage and Leads to Male Infertility in Mice.
Cell. 2016 Dec 1;167(6):1511-1524.e10. doi: 10.1016/j.cell.2016.11.016. Epub 2016 Nov 21.
7
Structure of the NS2B-NS3 protease from Zika virus after self-cleavage.
Nat Commun. 2016 Nov 15;7:13410. doi: 10.1038/ncomms13410.
8
Zika virus infection damages the testes in mice.
Nature. 2016 Dec 15;540(7633):438-442. doi: 10.1038/nature20556. Epub 2016 Oct 31.
9
Mechanisms of activation and inhibition of Zika virus NS2B-NS3 protease.
Cell Res. 2016 Nov;26(11):1260-1263. doi: 10.1038/cr.2016.116. Epub 2016 Oct 18.
10
Prolonged Detection of Zika Virus in Vaginal Secretions and Whole Blood.
Emerg Infect Dis. 2017 Jan;23(1):99-101. doi: 10.3201/eid2301.161394. Epub 2017 Jan 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验