Suppr超能文献

改写遗传密码。

Rewriting the Genetic Code.

机构信息

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511; email:

Department of Biochemistry, University of Washington, Seattle, Washington 98195.

出版信息

Annu Rev Microbiol. 2017 Sep 8;71:557-577. doi: 10.1146/annurev-micro-090816-093247. Epub 2017 Jul 11.

Abstract

The genetic code-the language used by cells to translate their genomes into proteins that perform many cellular functions-is highly conserved throughout natural life. Rewriting the genetic code could lead to new biological functions such as expanding protein chemistries with noncanonical amino acids (ncAAs) and genetically isolating synthetic organisms from natural organisms and viruses. It has long been possible to transiently produce proteins bearing ncAAs, but stabilizing an expanded genetic code for sustained function in vivo requires an integrated approach: creating recoded genomes and introducing new translation machinery that function together without compromising viability or clashing with endogenous pathways. In this review, we discuss design considerations and technologies for expanding the genetic code. The knowledge obtained by rewriting the genetic code will deepen our understanding of how genomes are designed and how the canonical genetic code evolved.

摘要

遗传密码——细胞用于将其基因组翻译成执行许多细胞功能的蛋白质的语言——在整个自然生命中高度保守。重写遗传密码可能会产生新的生物学功能,例如用非标准氨基酸 (ncAAs) 扩展蛋白质化学,并将合成生物体与天然生物体和病毒从遗传上隔离。使带有 ncAAs 的蛋白质瞬时产生一直是可能的,但是稳定扩展的遗传密码以在体内持续发挥功能需要一种综合方法:创建重新编码的基因组并引入新的翻译机制,这些机制共同发挥作用而不会损害生存能力或与内源性途径发生冲突。在这篇综述中,我们讨论了扩展遗传密码的设计考虑因素和技术。通过重写遗传密码获得的知识将加深我们对基因组如何设计以及经典遗传密码如何进化的理解。

相似文献

1
Rewriting the Genetic Code.
Annu Rev Microbiol. 2017 Sep 8;71:557-577. doi: 10.1146/annurev-micro-090816-093247. Epub 2017 Jul 11.
2
Coupling genetic code expansion and metabolic engineering for synthetic cells.
Curr Opin Biotechnol. 2017 Dec;48:1-7. doi: 10.1016/j.copbio.2017.02.002. Epub 2017 Feb 24.
4
Learning from Nature to Expand the Genetic Code.
Trends Biotechnol. 2021 May;39(5):460-473. doi: 10.1016/j.tibtech.2020.08.003. Epub 2020 Sep 4.
6
Synthetic alienation of microbial organisms by using genetic code engineering: Why and how?
Biotechnol J. 2017 Aug;12(8). doi: 10.1002/biot.201600097. Epub 2017 Jul 3.
7
Xenomicrobiology: a roadmap for genetic code engineering.
Microb Biotechnol. 2016 Sep;9(5):666-76. doi: 10.1111/1751-7915.12398. Epub 2016 Aug 4.
8
Natural history and experimental evolution of the genetic code.
Appl Microbiol Biotechnol. 2007 Mar;74(4):739-53. doi: 10.1007/s00253-006-0823-6. Epub 2007 Feb 1.
9
Some theoretical aspects of reprogramming the standard genetic code.
Genetics. 2021 May 17;218(1). doi: 10.1093/genetics/iyab040.
10
Overcoming Challenges in Engineering the Genetic Code.
J Mol Biol. 2016 Feb 27;428(5 Pt B):1004-21. doi: 10.1016/j.jmb.2015.09.003. Epub 2015 Sep 5.

引用本文的文献

1
Directed evolution of aminoacyl-tRNA synthetases through in vivo hypermutation.
Nat Commun. 2025 May 24;16(1):4832. doi: 10.1038/s41467-025-60120-w.
2
3
Biological Regulation Studied and with Modified Proteins.
Acc Chem Res. 2025 Apr 1;58(7):1109-1119. doi: 10.1021/acs.accounts.5c00023. Epub 2025 Mar 12.
4
Pyrrolysine Aminoacyl-tRNA Synthetase as a Tool for Expanding the Genetic Code.
Int J Mol Sci. 2025 Jan 10;26(2):539. doi: 10.3390/ijms26020539.
5
Cellular Site-Specific Incorporation of Noncanonical Amino Acids in Synthetic Biology.
Chem Rev. 2024 Sep 25;124(18):10577-10617. doi: 10.1021/acs.chemrev.3c00938. Epub 2024 Aug 29.
6
Cracking the Code: Reprogramming the Genetic Script in Prokaryotes and Eukaryotes to Harness the Power of Noncanonical Amino Acids.
Chem Rev. 2024 Sep 25;124(18):10281-10362. doi: 10.1021/acs.chemrev.3c00878. Epub 2024 Aug 9.
7
Evolution of Pyrrolysyl-tRNA Synthetase: From Methanogenesis to Genetic Code Expansion.
Chem Rev. 2024 Aug 28;124(16):9580-9608. doi: 10.1021/acs.chemrev.4c00031. Epub 2024 Jul 2.
8
Native Aminoacyl-tRNA Synthetase/tRNA Pair Drives Highly Efficient Noncanonical Amino Acid Incorporation in .
ACS Chem Biol. 2024 Jul 19;19(7):1563-1569. doi: 10.1021/acschembio.4c00221. Epub 2024 Jun 24.
10
Synthetic Genomics: Repurposing Biological Systems for Applications in Engineering Biology.
ACS Synth Biol. 2024 May 17;13(5):1394-1399. doi: 10.1021/acssynbio.4c00006.

本文引用的文献

1
Designing logical codon reassignment - Expanding the chemistry in biology.
Chem Sci. 2015 Jan 1;6(1):50-69. doi: 10.1039/c4sc01534g. Epub 2014 Jul 14.
2
Optimizing complex phenotypes through model-guided multiplex genome engineering.
Genome Biol. 2017 May 25;18(1):100. doi: 10.1186/s13059-017-1217-z.
3
Large-scale recoding of a bacterial genome by iterative recombineering of synthetic DNA.
Nucleic Acids Res. 2017 Jun 20;45(11):6971-6980. doi: 10.1093/nar/gkx415.
4
RNA-Dependent Cysteine Biosynthesis in Bacteria and Archaea.
mBio. 2017 May 9;8(3):e00561-17. doi: 10.1128/mBio.00561-17.
5
Nuclear codon reassignments in the genomics era and mechanisms behind their evolution.
Bioessays. 2017 May;39(5). doi: 10.1002/bies.201600221. Epub 2017 Mar 20.
6
Design of a synthetic yeast genome.
Science. 2017 Mar 10;355(6329):1040-1044. doi: 10.1126/science.aaf4557.
7
Nuclear genetic codes with a different meaning of the UAG and the UAA codon.
BMC Biol. 2017 Feb 13;15(1):8. doi: 10.1186/s12915-017-0353-y.
8
An orthogonalized platform for genetic code expansion in both bacteria and eukaryotes.
Nat Chem Biol. 2017 Apr;13(4):446-450. doi: 10.1038/nchembio.2312. Epub 2017 Feb 13.
9
Transfer RNAs with novel cloverleaf structures.
Nucleic Acids Res. 2017 Mar 17;45(5):2776-2785. doi: 10.1093/nar/gkw898.
10
Translation system engineering in Escherichia coli enhances non-canonical amino acid incorporation into proteins.
Biotechnol Bioeng. 2017 May;114(5):1074-1086. doi: 10.1002/bit.26239. Epub 2017 Feb 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验