Department of Physics, Nagoya University, Nagoya, Aichi 464-8602, Japan.
Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA; Department of Anesthesiology, Weill Cornell Medicine, New York, NY 10065, USA.
Biochim Biophys Acta Gen Subj. 2018 Feb;1862(2):229-240. doi: 10.1016/j.bbagen.2017.07.010. Epub 2017 Jul 15.
Many biological processes in a living cell are consequences of sequential and hierarchical dynamic events of biological macromolecules such as molecular interactions and conformational changes. Hence, knowledge of structures, assembly and dynamics of proteins is the foundation for understanding how biological molecules work. Among several techniques to analyze dynamics of proteins, high-speed atomic force microscopy (HS-AFM) is unique to provide direct information about both structure and dynamics of single proteins at work.
The scope of this review is overviewing recent progresses of HS-AFM for studying dynamic processes of biomolecular systems. In the technical descriptions, key developments enabling fast and non-invasive imaging of biological samples are briefly mentioned. Then recent successful applications of HS-AFM are overviewed to showcase the power of HS-AFM in biological research.
We discuss examples where HS-AFM movies captured important dynamic biological processes, including conformational dynamics of membrane proteins, processive movements of enzymes, assembly and disassembly processes of protein supramolecular structures, and dynamics in a two-dimensional protein crystal. These examples demonstrate the usability of HS-AFM to reveal biomolecular processes at high spatiotemporal (nanometer and subsecond) resolution.
Real-time movies of unlabeled proteins at work captured by HS-AFM allowed us to directly gain insights into mechanisms of molecular actions. Together with further functional extensions, HS-AFM will enable researchers to investigate more complex biological systems involving multiple proteins and will become an indispensable technique for life science. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" Guest Editor: Dr., Professor Koichi Kato.
活细胞中的许多生物过程都是生物大分子如分子相互作用和构象变化的顺序和层次动态事件的结果。因此,了解蛋白质的结构、组装和动力学是理解生物分子如何工作的基础。在分析蛋白质动力学的几种技术中,高速原子力显微镜(HS-AFM)是唯一能够提供工作中单个蛋白质结构和动力学的直接信息的技术。
本综述的范围是概述 HS-AFM 用于研究生物分子系统动态过程的最新进展。在技术描述中,简要提到了实现快速和非侵入性生物样品成像的关键发展。然后综述了 HS-AFM 的最新成功应用,展示了 HS-AFM 在生物研究中的强大功能。
我们讨论了 HS-AFM 电影捕捉到的重要动态生物学过程的例子,包括膜蛋白的构象动力学、酶的连续运动、蛋白质超分子结构的组装和拆卸过程以及二维蛋白质晶体中的动力学。这些例子证明了 HS-AFM 可用于以高时空(纳米和亚秒)分辨率揭示生物分子过程。
通过 HS-AFM 捕获的未标记蛋白质的实时电影使我们能够直接深入了解分子作用的机制。随着功能的进一步扩展,HS-AFM 将使研究人员能够研究涉及多个蛋白质的更复杂的生物系统,并成为生命科学不可或缺的技术。本文是题为“生物物理探索生物分子系统动态有序性”的特刊的一部分,客座编辑:Dr. ,Koichi Kato 教授。