Suppr超能文献

胆管癌靶向治疗。

Targeting cholangiocarcinoma.

机构信息

Department of Gastroenterology and Hepatology, University Hospital Zürich, Switzerland.

Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.

出版信息

Biochim Biophys Acta Mol Basis Dis. 2018 Apr;1864(4 Pt B):1454-1460. doi: 10.1016/j.bbadis.2017.08.027. Epub 2017 Aug 24.

Abstract

Cholangiocarcinoma (CCA) represents a diverse group of epithelial cancers associated with the biliary tract, and can best be stratified anatomically into intrahepatic (iCCA), perihilar (pCCA) and distal (dCCA) subsets. Molecular profiling has identified genetic aberrations associated with these anatomic subsets. For example, IDH catalytic site mutations and constitutively active FGFR2 fusion genes are predominantly identified in iCCA, whereas KRAS mutations and PRKACB fusions genes are identified in pCCA and dCCA. Clinical trials targeting these specific driver mutations are in progress. However, The Tumor Genome Atlas (TCGA) marker analysis of CCA also highlights the tremendous molecular heterogeneity of this cancer rendering comprehensive employment of targeted therapies challenging. CCA also display a rich tumor microenvironment which may be easier to target. For example, targeting cancer associated fibroblasts for apoptosis with BH3-mimetics and/or and reversing T-cell exhaustion with immune check point inhibitors may help aid in the treatment of this otherwise devastating malignancy. Combinatorial therapy attacking the tumor microenvironment plus targeted therapy may help advance treatment for CCA. This article is part of a Special Issue entitled: Cholangiocytes in Health and Disease edited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.

摘要

胆管癌(CCA)是一组与胆道相关的上皮性癌症,最好根据解剖位置分为肝内(iCCA)、肝门周围(pCCA)和远端(dCCA)亚型。分子谱分析已经确定了与这些解剖亚型相关的遗传异常。例如,IDH 催化位点突变和组成性激活的 FGFR2 融合基因主要在 iCCA 中发现,而 KRAS 突变和 PRKACB 融合基因在 pCCA 和 dCCA 中发现。针对这些特定驱动基因突变的临床试验正在进行中。然而,癌症基因组图谱(TCGA)对 CCA 的标志物分析也突出了这种癌症的巨大分子异质性,使得全面应用靶向治疗具有挑战性。CCA 还表现出丰富的肿瘤微环境,这可能更容易成为治疗靶点。例如,使用 BH3 模拟物靶向肿瘤相关成纤维细胞凋亡,或使用免疫检查点抑制剂逆转 T 细胞耗竭,可能有助于治疗这种致命性恶性肿瘤。联合治疗攻击肿瘤微环境加靶向治疗可能有助于推进 CCA 的治疗。本文是由 Jesus Banales、Marco Marzioni、Nicholas LaRusso 和 Peter Jansen 编辑的特刊“健康与疾病中的胆管细胞”的一部分。

相似文献

1
Targeting cholangiocarcinoma.
Biochim Biophys Acta Mol Basis Dis. 2018 Apr;1864(4 Pt B):1454-1460. doi: 10.1016/j.bbadis.2017.08.027. Epub 2017 Aug 24.
2
Systemic treatment of advanced or recurrent biliary tract cancer.
Biosci Trends. 2020 Nov 4;14(5):328-341. doi: 10.5582/bst.2020.03240. Epub 2020 Aug 24.
3
Current controversies in cholangiocarcinoma.
Biochim Biophys Acta Mol Basis Dis. 2018 Apr;1864(4 Pt B):1461-1467. doi: 10.1016/j.bbadis.2017.07.027. Epub 2017 Jul 26.
4
Chemoresistance and chemosensitization in cholangiocarcinoma.
Biochim Biophys Acta Mol Basis Dis. 2018 Apr;1864(4 Pt B):1444-1453. doi: 10.1016/j.bbadis.2017.06.005. Epub 2017 Jul 7.
5
The search for novel diagnostic and prognostic biomarkers in cholangiocarcinoma.
Biochim Biophys Acta Mol Basis Dis. 2018 Apr;1864(4 Pt B):1468-1477. doi: 10.1016/j.bbadis.2017.08.002. Epub 2017 Aug 4.
6
Cholangiocytes in the pathogenesis of primary sclerosing cholangitis and development of cholangiocarcinoma.
Biochim Biophys Acta Mol Basis Dis. 2018 Apr;1864(4 Pt B):1390-1400. doi: 10.1016/j.bbadis.2017.08.020. Epub 2017 Aug 25.
7
The immune milieu of cholangiocarcinoma: From molecular pathogenesis to precision medicine.
J Autoimmun. 2019 Jun;100:17-26. doi: 10.1016/j.jaut.2019.03.007. Epub 2019 Mar 9.
8
Biologics, Immunotherapy, and Future Directions in the Treatment of Advanced Cholangiocarcinoma.
Clin Colorectal Cancer. 2019 Jun;18(2):81-90. doi: 10.1016/j.clcc.2019.02.005. Epub 2019 Feb 27.
9
The deleterious interplay between tumor epithelia and stroma in cholangiocarcinoma.
Biochim Biophys Acta Mol Basis Dis. 2018 Apr;1864(4 Pt B):1435-1443. doi: 10.1016/j.bbadis.2017.07.028. Epub 2017 Jul 27.
10
Emerging molecular therapeutic targets for cholangiocarcinoma.
J Hepatol. 2017 Sep;67(3):632-644. doi: 10.1016/j.jhep.2017.03.026. Epub 2017 Apr 5.

引用本文的文献

1
Targeting Isocitrate Dehydrogenase (IDH) in Solid Tumors: Current Evidence and Future Perspectives.
Cancers (Basel). 2024 Aug 2;16(15):2752. doi: 10.3390/cancers16152752.
2
Significant response to pembrolizumab plus lenvatinib in Epstein-Barr-virus-associated intrahepatic cholangiocarcinoma: a case report.
Cancer Biol Ther. 2024 Dec 31;25(1):2338644. doi: 10.1080/15384047.2024.2338644. Epub 2024 Apr 22.
3
CircRNAs as New Therapeutic Entities and Tools for Target Identification in Acute Myeloid Leukemia.
Cancer Genomics Proteomics. 2024 Mar-Apr;21(2):118-136. doi: 10.21873/cgp.20434.
5
7
Criteria for preclinical models of cholangiocarcinoma: scientific and medical relevance.
Nat Rev Gastroenterol Hepatol. 2023 Jul;20(7):462-480. doi: 10.1038/s41575-022-00739-y. Epub 2023 Feb 8.
8
The Emerging Role of Ferroptosis in Liver Cancers.
Life (Basel). 2022 Dec 16;12(12):2128. doi: 10.3390/life12122128.
9
Establishment and Characterization of a New Human Intrahepatic Cholangiocarcinoma Cell Line LIV27.
Cancers (Basel). 2022 Oct 17;14(20):5080. doi: 10.3390/cancers14205080.

本文引用的文献

1
EZH2-mediated epigenetic silencing of TIMP2 promotes ovarian cancer migration and invasion.
Sci Rep. 2017 Jun 15;7(1):3568. doi: 10.1038/s41598-017-03362-z.
2
Cotargeting of MEK and PDGFR/STAT3 Pathways to Treat Pancreatic Ductal Adenocarcinoma.
Mol Cancer Ther. 2017 Sep;16(9):1729-1738. doi: 10.1158/1535-7163.MCT-17-0009. Epub 2017 Jun 15.
3
EZH2 in Cancer Progression and Potential Application in Cancer Therapy: A Friend or Foe?
Int J Mol Sci. 2017 May 31;18(6):1172. doi: 10.3390/ijms18061172.
4
Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular Profiles.
Cell Rep. 2017 Mar 14;18(11):2780-2794. doi: 10.1016/j.celrep.2017.02.033.
5
Polyclonal Secondary Mutations Drive Acquired Resistance to FGFR Inhibition in Patients with FGFR2 Fusion-Positive Cholangiocarcinoma.
Cancer Discov. 2017 Mar;7(3):252-263. doi: 10.1158/2159-8290.CD-16-1000. Epub 2016 Dec 29.
6
The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models.
Nature. 2016 Oct 27;538(7626):477-482. doi: 10.1038/nature19830. Epub 2016 Oct 19.
7
Biliary cancer: Utility of next-generation sequencing for clinical management.
Cancer. 2016 Dec 15;122(24):3838-3847. doi: 10.1002/cncr.30254. Epub 2016 Sep 13.
9
A Hippo and Fibroblast Growth Factor Receptor Autocrine Pathway in Cholangiocarcinoma.
J Biol Chem. 2016 Apr 8;291(15):8031-47. doi: 10.1074/jbc.M115.698472. Epub 2016 Jan 29.
10
Genomic Sequencing Identifies ELF3 as a Driver of Ampullary Carcinoma.
Cancer Cell. 2016 Feb 8;29(2):229-40. doi: 10.1016/j.ccell.2015.12.012. Epub 2016 Jan 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验