Suppr超能文献

酿酒酵母中氮同化的调控:URE2和GLN3基因的作用。

Regulation of nitrogen assimilation in Saccharomyces cerevisiae: roles of the URE2 and GLN3 genes.

作者信息

Courchesne W E, Magasanik B

机构信息

Department of Biology, Massachusetts Institute of Technology, Cambridge 02139.

出版信息

J Bacteriol. 1988 Feb;170(2):708-13. doi: 10.1128/jb.170.2.708-713.1988.

Abstract

Mutations in the GLN3 gene prevented a normal increase in the NAD-glutamate dehydrogenase and glutamine synthetase levels in glutamate-grown Saccharomyces cerevisiae cells, whereas mutations in the URE2 gene resulted in high levels of these enzymes in glumate- and glutamine-grown cells. A ure2 gln3 double mutant had low levels of glutamate dehydrogenase and glutamine synthetase in cells grown on glutamate and glutamine; thus, gln3 mutations were epistatic to the ure2 mutations. The results suggest that the GLN3 product is capable of promoting increases in enzyme levels in the absence of a functional URE2 product and that the URE2 product antagonizes the GLN3 product. The URE2 and GLN3 genes were also found to regulate the level of arginase activity. This regulation is completely independent of the regulation of arginase by substrate induction. The activities of glutamate dehydrogenase, glutamine synthetase, and arginase were higher in cells grown on glutamate as the nitrogen source than they were in cells grown under a nitrogen-limiting condition. It had previously been shown that the levels of these enzymes can be increased by glutamine deprivation. We propose that the URE2-GLN3 system regulates enzyme synthesis, in response to glutamine and glutamate, to adjust the intracellular concentration of ammonia so as to maintain glutamine at the level required for optimal growth.

摘要

GLN3基因突变会阻止以谷氨酸为生长底物的酿酒酵母细胞中NAD - 谷氨酸脱氢酶和谷氨酰胺合成酶水平的正常升高,而URE2基因突变则导致在以谷氨酸和谷氨酰胺为生长底物的细胞中这些酶的水平升高。ure2 gln3双突变体在以谷氨酸和谷氨酰胺为生长底物的细胞中谷氨酸脱氢酶和谷氨酰胺合成酶水平较低;因此,gln3突变对ure2突变呈上位性。结果表明,在缺乏功能性URE2产物的情况下,GLN3产物能够促进酶水平的升高,并且URE2产物拮抗GLN3产物。还发现URE2和GLN3基因调节精氨酸酶活性水平。这种调节完全独立于底物诱导对精氨酸酶的调节。以谷氨酸作为氮源生长的细胞中谷氨酸脱氢酶、谷氨酰胺合成酶和精氨酸酶的活性高于在氮限制条件下生长的细胞。先前已经表明,这些酶的水平可以通过谷氨酰胺剥夺而升高。我们提出,URE2 - GLN3系统响应谷氨酰胺和谷氨酸调节酶的合成,以调节细胞内氨的浓度,从而将谷氨酰胺维持在最佳生长所需的水平。

相似文献

1
Regulation of nitrogen assimilation in Saccharomyces cerevisiae: roles of the URE2 and GLN3 genes.
J Bacteriol. 1988 Feb;170(2):708-13. doi: 10.1128/jb.170.2.708-713.1988.
2
Regulation of glutamine-repressible gene products by the GLN3 function in Saccharomyces cerevisiae.
Mol Cell Biol. 1984 Dec;4(12):2758-66. doi: 10.1128/mcb.4.12.2758-2766.1984.
3
Roles of URE2 and GLN3 in the proline utilization pathway in Saccharomyces cerevisiae.
Mol Cell Biol. 1995 Apr;15(4):2321-30. doi: 10.1128/MCB.15.4.2321.
4
Asparaginase II of Saccharomyces cerevisiae. GLN3/URE2 regulation of a periplasmic enzyme.
Appl Biochem Biotechnol. 1997 Spring;63-65:203-12. doi: 10.1007/978-1-4612-2312-2_19.
5
More than One Way in: Three Gln3 Sequences Required To Relieve Negative Ure2 Regulation and Support Nuclear Gln3 Import in .
Genetics. 2018 Jan;208(1):207-227. doi: 10.1534/genetics.117.300457. Epub 2017 Nov 7.
8
Nitrogen-regulated transcription and enzyme activities in continuous cultures of Saccharomyces cerevisiae.
Microbiology (Reading). 1995 May;141 ( Pt 5):1101-1108. doi: 10.1099/13500872-141-5-1101.
9
The concentration of ammonia regulates nitrogen metabolism in Saccharomyces cerevisiae.
J Bacteriol. 1995 Nov;177(22):6672-5. doi: 10.1128/jb.177.22.6672-6675.1995.

引用本文的文献

1
Moonlighting Proteins: Diverse Functions Found in Fungi.
J Fungi (Basel). 2023 Nov 15;9(11):1107. doi: 10.3390/jof9111107.
2
Proteomics of : Overview of Changes Triggered by Nitrogen Catabolite Repression.
J Fungi (Basel). 2023 Nov 12;9(11):1102. doi: 10.3390/jof9111102.
3
MIL-CELL: a tool for multi-scale simulation of yeast replication and prion transmission.
Eur Biophys J. 2023 Nov;52(8):673-704. doi: 10.1007/s00249-023-01679-4. Epub 2023 Sep 5.
5
Increased Accumulation of Squalene in Engineered Yarrowia lipolytica through Deletion of and .
Appl Environ Microbiol. 2021 Aug 11;87(17):e0048121. doi: 10.1128/AEM.00481-21.
7
Dal81 Regulates Expression of Arginine Metabolism Genes in .
mSphere. 2018 Mar 7;3(2). doi: 10.1128/mSphere.00028-18. eCollection 2018 Mar-Apr.
8
More than One Way in: Three Gln3 Sequences Required To Relieve Negative Ure2 Regulation and Support Nuclear Gln3 Import in .
Genetics. 2018 Jan;208(1):207-227. doi: 10.1534/genetics.117.300457. Epub 2017 Nov 7.
9
GATOR1 regulates nitrogenic cataplerotic reactions of the mitochondrial TCA cycle.
Nat Chem Biol. 2017 Nov;13(11):1179-1186. doi: 10.1038/nchembio.2478. Epub 2017 Sep 18.

本文引用的文献

1
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
3
Proline: an essential intermediate in arginine degradation in Saccharomyces cerevisiae.
J Bacteriol. 1980 Sep;143(3):1403-10. doi: 10.1128/jb.143.3.1403-1410.1980.
4
Ammonia regulation of amino acid permeases in Saccharomyces cerevisiae.
Mol Cell Biol. 1983 Apr;3(4):672-83. doi: 10.1128/mcb.3.4.672-683.1983.
5
Three regulatory systems control production of glutamine synthetase in Saccharomyces cerevisiae.
Mol Cell Biol. 1984 Dec;4(12):2767-73. doi: 10.1128/mcb.4.12.2767-2773.1984.
6
Regulation of glutamine-repressible gene products by the GLN3 function in Saccharomyces cerevisiae.
Mol Cell Biol. 1984 Dec;4(12):2758-66. doi: 10.1128/mcb.4.12.2758-2766.1984.
9
Regulation of glutamine synthetase from Saccharomyces cerevisiae by repression, inactivation and proteolysis.
Eur J Biochem. 1982 Apr;123(3):611-6. doi: 10.1111/j.1432-1033.1982.tb06576.x.
10
The induction of arginase in Saccharomyces cerevisiae.
J Biol Chem. 1973 Sep 10;248(17):6197-202.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验