Suppr超能文献

URE2和GLN3在酿酒酵母脯氨酸利用途径中的作用。

Roles of URE2 and GLN3 in the proline utilization pathway in Saccharomyces cerevisiae.

作者信息

Xu S, Falvey D A, Brandriss M C

机构信息

Department of Microbiology and Molecular Genetics, UMD-New Jersey Medical School, Newark 07103.

出版信息

Mol Cell Biol. 1995 Apr;15(4):2321-30. doi: 10.1128/MCB.15.4.2321.

Abstract

The yeast Saccharomyces cerevisiae can use alternative nitrogen sources such as arginine, urea, allantoin, gamma-aminobutyrate, or proline when preferred nitrogen sources like glutamine, asparagine, or ammonium ions are unavailable in the environment. Utilization of alternative nitrogen sources requires the relief of nitrogen repression and induction of specific permeases and enzymes. The products of the GLN3 and URE2 genes are required for the appropriate transcription of many genes in alternative nitrogen assimilatory pathways. GLN3 appears to activate their transcription when good nitrogen sources are unavailable, and URE2 appears to repress their transcription when alternative nitrogen sources are not needed. The participation of nitrogen repression and the regulators GLN3 and URE2 in the proline utilization pathway was evaluated in this study. Comparison of PUT gene expression in cells grown in repressing or derepressing nitrogen sources, in the absence of the inducer proline, indicated that both PUT1 and PUT2 are regulated by nitrogen repression, although the effect on PUT2 is comparatively small. Recessive mutations in URE2 elevated expression of the PUT1 and PUT2 genes 5- to 10-fold when cells were grown on a nitrogen-repressing medium. Although PUT3, the proline utilization pathway transcriptional activator, is absolutely required for growth on proline as the sole nitrogen source, a put3 ure2 strain had somewhat elevated PUT gene expression, suggesting an effect of the ure2 mutation in the absence of the PUT3 product. PUT1 and PUT2 gene expression did not require the GLN3 activator protein for expression under either repressing or derepressing conditions. Therefore, regulation of the PUT genes by URE2 does not require a functional GLN3 protein. The effect of the ure2 mutation on the PUT genes is not due to increased internal proline levels. URE2 repression appears to be limited to nitrogen assimilatory systems and does not affect genes involved in carbon, inositol, or phosphate metabolism or in mating-type control and sporulation.

摘要

当环境中缺乏谷氨酰胺、天冬酰胺或铵离子等优质氮源时,酿酒酵母可以利用精氨酸、尿素、尿囊素、γ-氨基丁酸或脯氨酸等替代氮源。利用替代氮源需要解除氮阻遏并诱导特定的通透酶和酶。GLN3和URE2基因的产物是许多替代氮同化途径中基因进行适当转录所必需的。当优质氮源不可用时,GLN3似乎会激活它们的转录,而当不需要替代氮源时,URE2似乎会抑制它们的转录。本研究评估了氮阻遏以及调节因子GLN3和URE2在脯氨酸利用途径中的参与情况。在没有诱导剂脯氨酸的情况下,比较在抑制性或去抑制性氮源中生长的细胞中PUT基因的表达,结果表明PUT1和PUT2都受氮阻遏的调节,尽管对PUT2的影响相对较小。当细胞在氮抑制培养基上生长时,URE2中的隐性突变使PUT1和PUT2基因的表达提高了5至10倍。尽管脯氨酸利用途径转录激活因子PUT3是细胞以脯氨酸作为唯一氮源生长所绝对必需的,但put3 ure2菌株的PUT基因表达有所提高,这表明在没有PUT3产物的情况下ure2突变具有一定作用。在抑制或去抑制条件下,PUT1和PUT2基因的表达都不需要GLN3激活蛋白。因此,URE2对PUT基因的调节不需要功能性的GLN3蛋白。ure2突变对PUT基因的影响不是由于细胞内脯氨酸水平升高所致。URE2的抑制作用似乎仅限于氮同化系统,并不影响参与碳、肌醇或磷酸盐代谢以及交配型控制和孢子形成的基因。

相似文献

1
Roles of URE2 and GLN3 in the proline utilization pathway in Saccharomyces cerevisiae.
Mol Cell Biol. 1995 Apr;15(4):2321-30. doi: 10.1128/MCB.15.4.2321.
5
More than One Way in: Three Gln3 Sequences Required To Relieve Negative Ure2 Regulation and Support Nuclear Gln3 Import in .
Genetics. 2018 Jan;208(1):207-227. doi: 10.1534/genetics.117.300457. Epub 2017 Nov 7.
7
Asparaginase II of Saccharomyces cerevisiae. GLN3/URE2 regulation of a periplasmic enzyme.
Appl Biochem Biotechnol. 1997 Spring;63-65:203-12. doi: 10.1007/978-1-4612-2312-2_19.
8
Regulation of nitrogen assimilation in Saccharomyces cerevisiae: roles of the URE2 and GLN3 genes.
J Bacteriol. 1988 Feb;170(2):708-13. doi: 10.1128/jb.170.2.708-713.1988.

引用本文的文献

1
Proteomics of : Overview of Changes Triggered by Nitrogen Catabolite Repression.
J Fungi (Basel). 2023 Nov 12;9(11):1102. doi: 10.3390/jof9111102.
2
Proline Homeostasis in : How Does the Stress-Responsive Transcription Factor Msn2 Play a Role?
Front Genet. 2020 Apr 28;11:438. doi: 10.3389/fgene.2020.00438. eCollection 2020.
3
Nitrogen metabolite repression of metabolism and virulence in the human fungal pathogen Cryptococcus neoformans.
Genetics. 2011 Jun;188(2):309-23. doi: 10.1534/genetics.111.128538. Epub 2011 Mar 24.
5
Recent advances in nitrogen regulation: a comparison between Saccharomyces cerevisiae and filamentous fungi.
Eukaryot Cell. 2008 Jun;7(6):917-25. doi: 10.1128/EC.00076-08. Epub 2008 Apr 25.
7
Improved anaerobic use of arginine by Saccharomyces cerevisiae.
Appl Environ Microbiol. 2003 Mar;69(3):1623-8. doi: 10.1128/AEM.69.3.1623-1628.2003.
9
Carbon- and nitrogen-quality signaling to translation are mediated by distinct GATA-type transcription factors.
Proc Natl Acad Sci U S A. 2001 Jun 19;98(13):7283-8. doi: 10.1073/pnas.121186898.
10

本文引用的文献

2
[URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae.
Science. 1994 Apr 22;264(5158):566-9. doi: 10.1126/science.7909170.
4
Proline: an essential intermediate in arginine degradation in Saccharomyces cerevisiae.
J Bacteriol. 1980 Sep;143(3):1403-10. doi: 10.1128/jb.143.3.1403-1410.1980.
6
Proline utilization in Saccharomyces cerevisiae: analysis of the cloned PUT2 gene.
Mol Cell Biol. 1983 Oct;3(10):1846-56. doi: 10.1128/mcb.3.10.1846-1856.1983.
8
Transformation of intact yeast cells treated with alkali cations.
J Bacteriol. 1983 Jan;153(1):163-8. doi: 10.1128/jb.153.1.163-168.1983.
9
Acid phosphatase polypeptides in Saccharomyces cerevisiae are encoded by a differentially regulated multigene family.
Proc Natl Acad Sci U S A. 1982 Apr;79(7):2157-61. doi: 10.1073/pnas.79.7.2157.
10
Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose.
Proc Natl Acad Sci U S A. 1980 Sep;77(9):5201-5. doi: 10.1073/pnas.77.9.5201.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验