Suppr超能文献

墨西哥低收入成年人的糖尿病视网膜病变筛查工具。

A Diabetic Retinopathy Screening Tool for Low-Income Adults in Mexico.

机构信息

Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, México.

Center for Evaluation and Surveys Research, National Institute of Public Health, Cuernavaca, Morelos, México.

出版信息

Prev Chronic Dis. 2017 Oct 12;14:E95. doi: 10.5888/pcd14.170157.

Abstract

INTRODUCTION

A national diabetic retinopathy screening program does not exist in Mexico as of 2017. Our objective was to develop a screening tool based on a predictive model for early detection of diabetic retinopathy in a low-income population.

METHODS

We analyzed biochemical, clinical, anthropometric, and sociodemographic information from 1,000 adults with diabetes in low-income communities in Mexico (from 11,468 adults recruited in 2014-2016). A comprehensive ophthalmologic evaluation was performed. We developed the screening tool through the following stages: 1) development of a theoretical predictive model, 2) performance assessment and validation of the model using cross-validation and the area under the receiver operating characteristic curve (AUC ROC), and 3) optimization of cut points for the classification of diabetic retinopathy. We identified points along the AUC ROC that minimized the misclassification cost function and considered various scenarios of misclassification costs and diabetic retinopathy prevalence.

RESULTS

Time since diabetes diagnosis, high blood glucose levels, systolic hypertension, and physical inactivity were considered risk factors in our screening tool. The mean AUC ROC of our model was 0.780 (validation data set). The optimized cut point that best represented our study population (z = -0.640) had a sensitivity of 82.9% and a specificity of 61.9%.

CONCLUSION

We developed a low-cost and easy-to-apply screening tool to detect people at high risk of diabetic retinopathy in Mexico. Although classification performance of our tool was acceptable (AUC ROC > 0.75), error rates (precision) depend on false-negative and false-positive rates. Therefore, confirmatory assessment of all cases is mandatory.

摘要

简介

截至 2017 年,墨西哥尚未建立全国性的糖尿病视网膜病变筛查计划。我们的目标是开发一种筛查工具,基于预测模型,用于早期发现低收入人群中的糖尿病视网膜病变。

方法

我们分析了来自墨西哥低收入社区的 1000 名糖尿病成年人的生化、临床、人体测量和社会人口统计学信息(来自 2014-2016 年招募的 11468 名成年人)。进行了全面的眼科评估。我们通过以下阶段开发了筛查工具:1)开发理论预测模型,2)使用交叉验证和接收者操作特征曲线下的面积(AUC ROC)评估和验证模型的性能,3)优化分类糖尿病视网膜病变的切点。我们沿着 AUC ROC 确定了最小化错误分类成本函数的点,并考虑了各种错误分类成本和糖尿病视网膜病变患病率的情况。

结果

糖尿病诊断后的时间、高血糖水平、收缩压升高和缺乏体力活动被认为是我们筛查工具的危险因素。我们模型的平均 AUC ROC 为 0.780(验证数据集)。优化的切点(z = -0.640)最佳代表了我们的研究人群,其敏感性为 82.9%,特异性为 61.9%。

结论

我们开发了一种低成本且易于应用的筛查工具,用于检测墨西哥高风险糖尿病视网膜病变的人群。虽然我们工具的分类性能(AUC ROC > 0.75)是可以接受的,但错误率(精度)取决于假阴性和假阳性率。因此,必须对所有病例进行确认性评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18f7/5645201/5f47a61aafae/PCD-14-E95s01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验