Suppr超能文献

相互依存、反身性、保真度、阻抗匹配以及遗传编码的演化。

Interdependence, Reflexivity, Fidelity, Impedance Matching, and the Evolution of Genetic Coding.

机构信息

Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC.

Department of Physics, University of Auckland, Auckland, New Zealand.

出版信息

Mol Biol Evol. 2018 Feb 1;35(2):269-286. doi: 10.1093/molbev/msx265.

Abstract

Genetic coding is generally thought to have required ribozymes whose functions were taken over by polypeptide aminoacyl-tRNA synthetases (aaRS). Two discoveries about aaRS and their interactions with tRNA substrates now furnish a unifying rationale for the opposite conclusion: that the key processes of the Central Dogma of molecular biology emerged simultaneously and naturally from simple origins in a peptide•RNA partnership, eliminating the epistemological utility of a prior RNA world. First, the two aaRS classes likely arose from opposite strands of the same ancestral gene, implying a simple genetic alphabet. The resulting inversion symmetries in aaRS structural biology would have stabilized the initial and subsequent differentiation of coding specificities, rapidly promoting diversity in the proteome. Second, amino acid physical chemistry maps onto tRNA identity elements, establishing reflexive, nanoenvironmental sensing in protein aaRS. Bootstrapping of increasingly detailed coding is thus intrinsic to polypeptide aaRS, but impossible in an RNA world. These notions underline the following concepts that contradict gradual replacement of ribozymal aaRS by polypeptide aaRS: 1) aaRS enzymes must be interdependent; 2) reflexivity intrinsic to polypeptide aaRS production dynamics promotes bootstrapping; 3) takeover of RNA-catalyzed aminoacylation by enzymes will necessarily degrade specificity; and 4) the Central Dogma's emergence is most probable when replication and translation error rates remain comparable. These characteristics are necessary and sufficient for the essentially de novo emergence of a coupled gene-replicase-translatase system of genetic coding that would have continuously preserved the functional meaning of genetically encoded protein genes whose phylogenetic relationships match those observed today.

摘要

遗传密码通常被认为需要核酶,其功能后来被多肽氨酰-tRNA 合成酶(aaRS)接管。现在,关于 aaRS 及其与 tRNA 底物相互作用的两项发现为相反的结论提供了一个统一的基本原理:分子生物学中心法则的关键过程是从肽-RNA 伙伴关系中的简单起源中同时自然出现的,从而消除了 RNA 世界先前的认识论效用。首先,这两个 aaRS 类可能是从同一个祖先基因的相反链中产生的,这意味着简单的遗传字母表。aaRS 结构生物学中由此产生的反转对称会稳定编码特异性的初始和后续分化,从而迅速促进蛋白质组的多样性。其次,氨基酸物理化学映射到 tRNA 身份元素上,从而在蛋白质 aaRS 中建立了反射性的纳米环境感应。因此,编码的逐步细化是多肽 aaRS 的内在特性,但在 RNA 世界中是不可能的。这些概念强调了以下与逐渐用多肽 aaRS 替代核酶 aaRS 相矛盾的概念:1)aaRS 酶必须相互依赖;2)多肽 aaRS 产生动力学的内在反射性促进了自举;3)用酶取代 RNA 催化的氨酰化必然会降低特异性;4)当复制和翻译错误率保持可比时,中心法则的出现最有可能。这些特征是遗传编码的偶联基因复制酶翻译酶系统基本从头出现的必要和充分条件,该系统将不断保留与今天观察到的系统相匹配的遗传编码蛋白基因的功能意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3d4/5850816/0b4a61347966/msx265f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验