Klapoetke Nathan C, Nern Aljoscha, Peek Martin Y, Rogers Edward M, Breads Patrick, Rubin Gerald M, Reiser Michael B, Card Gwyneth M
Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, USA.
Nature. 2017 Nov 9;551(7679):237-241. doi: 10.1038/nature24626.
Nervous systems combine lower-level sensory signals to detect higher-order stimulus features critical to survival, such as the visual looming motion created by an imminent collision or approaching predator. Looming-sensitive neurons have been identified in diverse animal species. Different large-scale visual features such as looming often share local cues, which means loom-detecting neurons face the challenge of rejecting confounding stimuli. Here we report the discovery of an ultra-selective looming detecting neuron, lobula plate/lobula columnar, type II (LPLC2) in Drosophila, and show how its selectivity is established by radial motion opponency. In the fly visual system, directionally selective small-field neurons called T4 and T5 form a spatial map in the lobula plate, where they each terminate in one of four retinotopic layers, such that each layer responds to motion in a different cardinal direction. Single-cell anatomical analysis reveals that each arm of the LPLC2 cross-shaped primary dendrites ramifies in one of these layers and extends along that layer's preferred motion direction. In vivo calcium imaging demonstrates that, as their shape predicts, individual LPLC2 neurons respond strongly to outward motion emanating from the centre of the neuron's receptive field. Each dendritic arm also receives local inhibitory inputs directionally selective for inward motion opposing the excitation. This radial motion opponency generates a balance of excitation and inhibition that makes LPLC2 non-responsive to related patterns of motion such as contraction, wide-field rotation or luminance change. As a population, LPLC2 neurons densely cover visual space and terminate onto the giant fibre descending neurons, which drive the jump muscle motor neuron to trigger an escape take off. Our findings provide a mechanistic description of the selective feature detection that flies use to discern and escape looming threats.
神经系统整合较低层次的感觉信号,以检测对生存至关重要的高阶刺激特征,例如即将发生碰撞或接近的捕食者所产生的视觉逼近运动。在多种动物物种中都已鉴定出对逼近敏感的神经元。不同的大规模视觉特征(如逼近)通常共享局部线索,这意味着检测逼近的神经元面临着排除混淆刺激的挑战。在这里,我们报告在果蝇中发现了一种超选择性的逼近检测神经元,即小叶板/小叶柱状II型(LPLC2),并展示了其选择性是如何通过径向运动拮抗作用建立的。在果蝇视觉系统中,称为T4和T5的方向选择性小场神经元在小叶板中形成一个空间图谱,它们各自终止于四个视网膜拓扑层中的一层,这样每个层对不同基本方向的运动做出反应。单细胞解剖分析表明,LPLC2十字形初级树突的每个分支在这些层中的一层分支,并沿着该层的偏好运动方向延伸。体内钙成像表明,正如其形状所预测的那样,单个LPLC2神经元对从神经元感受野中心发出的向外运动有强烈反应。每个树突分支还接收对与兴奋相反的向内运动具有方向选择性的局部抑制性输入。这种径向运动拮抗作用产生了兴奋和抑制的平衡,使得LPLC2对相关的运动模式(如收缩、广域旋转或亮度变化)无反应。作为一个群体,LPLC2神经元密集地覆盖视觉空间,并终止于驱动跳跃肌肉运动神经元触发逃逸起飞的巨大纤维下行神经元。我们的发现提供了果蝇用于识别和逃避逼近威胁的选择性特征检测的机制描述。