Suppr超能文献

使用ChromHMM进行染色质状态发现和基因组注释。

Chromatin-state discovery and genome annotation with ChromHMM.

作者信息

Ernst Jason, Kellis Manolis

机构信息

Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, California, USA.

Department of Computer Science, University of California, Los Angeles, Los Angeles, California, USA.

出版信息

Nat Protoc. 2017 Dec;12(12):2478-2492. doi: 10.1038/nprot.2017.124. Epub 2017 Nov 9.

Abstract

Noncoding DNA regions have central roles in human biology, evolution, and disease. ChromHMM helps to annotate the noncoding genome using epigenomic information across one or multiple cell types. It combines multiple genome-wide epigenomic maps, and uses combinatorial and spatial mark patterns to infer a complete annotation for each cell type. ChromHMM learns chromatin-state signatures using a multivariate hidden Markov model (HMM) that explicitly models the combinatorial presence or absence of each mark. ChromHMM uses these signatures to generate a genome-wide annotation for each cell type by calculating the most probable state for each genomic segment. ChromHMM provides an automated enrichment analysis of the resulting annotations to facilitate the functional interpretations of each chromatin state. ChromHMM is distinguished by its modeling emphasis on combinations of marks, its tight integration with downstream functional enrichment analyses, its speed, and its ease of use. Chromatin states are learned, annotations are produced, and enrichments are computed within 1 d.

摘要

非编码DNA区域在人类生物学、进化和疾病中起着核心作用。ChromHMM有助于利用跨一种或多种细胞类型的表观基因组信息对非编码基因组进行注释。它结合了多个全基因组表观基因组图谱,并使用组合和空间标记模式来推断每种细胞类型的完整注释。ChromHMM使用多变量隐马尔可夫模型(HMM)学习染色质状态特征,该模型明确地对每个标记的组合存在或不存在进行建模。ChromHMM通过计算每个基因组片段的最可能状态,使用这些特征为每种细胞类型生成全基因组注释。ChromHMM对所得注释进行自动富集分析,以促进对每种染色质状态的功能解释。ChromHMM的特点在于其对标记组合的建模重点、与下游功能富集分析的紧密整合、速度以及易用性。染色质状态得以学习,注释得以生成,富集分析在1天内即可完成。

相似文献

1
Chromatin-state discovery and genome annotation with ChromHMM.
Nat Protoc. 2017 Dec;12(12):2478-2492. doi: 10.1038/nprot.2017.124. Epub 2017 Nov 9.
3
Learning chromatin states with factorized information criteria.
Bioinformatics. 2015 Aug 1;31(15):2426-33. doi: 10.1093/bioinformatics/btv163. Epub 2015 Mar 24.
4
Spectacle: fast chromatin state annotation using spectral learning.
Genome Biol. 2015 Feb 12;16(1):33. doi: 10.1186/s13059-015-0598-0.
5
Systematic discovery of conservation states for single-nucleotide annotation of the human genome.
Commun Biol. 2019 Jul 2;2:248. doi: 10.1038/s42003-019-0488-1. eCollection 2019.
6
Discovery and characterization of chromatin states for systematic annotation of the human genome.
Nat Biotechnol. 2010 Aug;28(8):817-25. doi: 10.1038/nbt.1662. Epub 2010 Jul 25.
8
Robust chromatin state annotation.
Genome Res. 2024 Apr 25;34(3):469-483. doi: 10.1101/gr.278343.123.
9
Accurate and reproducible functional maps in 127 human cell types via 2D genome segmentation.
Nucleic Acids Res. 2017 Sep 29;45(17):9823-9836. doi: 10.1093/nar/gkx659.

引用本文的文献

1
Chromatin state dynamics during the intraerythrocytic development cycle.
bioRxiv. 2025 Aug 28:2025.08.22.671872. doi: 10.1101/2025.08.22.671872.
2
Mammalian conservation of endogenous G-quadruplex reveals their associations with complex traits.
Genome Biol. 2025 Sep 1;26(1):262. doi: 10.1186/s13059-025-03750-z.
9
β-catenin functions as a molecular adapter for disordered cBAF interactions.
Mol Cell. 2025 Jul 15. doi: 10.1016/j.molcel.2025.06.026.
10
Disruption of TAD hierarchy promotes LTR co-option in cancer.
Nat Genet. 2025 Jun 30. doi: 10.1038/s41588-025-02239-6.

本文引用的文献

1
Systematic Epigenomic Analysis Reveals Chromatin States Associated with Melanoma Progression.
Cell Rep. 2017 Apr 25;19(4):875-889. doi: 10.1016/j.celrep.2017.03.078.
3
Multi-scale chromatin state annotation using a hierarchical hidden Markov model.
Nat Commun. 2017 Apr 7;8:15011. doi: 10.1038/ncomms15011.
4
Cooperative Binding of Transcription Factors Orchestrates Reprogramming.
Cell. 2017 Jan 26;168(3):442-459.e20. doi: 10.1016/j.cell.2016.12.016. Epub 2017 Jan 19.
5
Accurate Promoter and Enhancer Identification in 127 ENCODE and Roadmap Epigenomics Cell Types and Tissues by GenoSTAN.
PLoS One. 2017 Jan 5;12(1):e0169249. doi: 10.1371/journal.pone.0169249. eCollection 2017.
8
Genome-scale high-resolution mapping of activating and repressive nucleotides in regulatory regions.
Nat Biotechnol. 2016 Nov;34(11):1180-1190. doi: 10.1038/nbt.3678. Epub 2016 Oct 3.
9
Jointly characterizing epigenetic dynamics across multiple human cell types.
Nucleic Acids Res. 2016 Aug 19;44(14):6721-31. doi: 10.1093/nar/gkw278. Epub 2016 Apr 19.
10
FTO Obesity Variant Circuitry and Adipocyte Browning in Humans.
N Engl J Med. 2015 Sep 3;373(10):895-907. doi: 10.1056/NEJMoa1502214. Epub 2015 Aug 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验