School of Pharmaceutical Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China.
J Physiol. 2018 Mar 15;596(6):969-978. doi: 10.1113/JP274404. Epub 2017 Dec 19.
The evolutionarily conserved Piezo family of proteins, including Piezo1 and Piezo2, encodes the long-sought-after mammalian mechanosensitive cation channels that play critical roles in various mechanotransduction processes such as touch, pain, proprioception, vascular development and blood pressure regulation. Mammalian Piezo proteins contain over 2500 amino acids with numerous predicted transmembrane segments, and do not bear sequence homology with any known class of ion channels. Thus, it is imperative, but challenging, to understand how they serve as effective mechanotransducers for converting mechanical force into electrochemical signals. Here, we review the recent major breakthroughs in determining the three-bladed, propeller-shaped structure of mouse Piezo1 using the state-of-the-art cryo-electron microscopy (cryo-EM) and functionally dissecting out the molecular bases that define its ion permeation and mechanotransduction properties, which provide key insights into clarifying its oligomeric status and pore-forming region. We also discuss the hypothesis that the complex Piezo proteins can be deduced into discrete mechanotransduction and ion-conducting pore modules, which coordinate to fulfil their specialized function in mechanical sensing and transduction, ion permeation and selection.
进化上保守的 Piezo 蛋白家族,包括 Piezo1 和 Piezo2,编码了长期以来备受关注的哺乳动物机械敏感阳离子通道,这些通道在各种机械转导过程中发挥着关键作用,如触觉、疼痛、本体感觉、血管发育和血压调节。哺乳动物 Piezo 蛋白包含超过 2500 个氨基酸,具有许多预测的跨膜片段,并且与任何已知的离子通道类别没有序列同源性。因此,理解它们如何作为有效的机械转导蛋白将机械力转化为电化学信号是至关重要的,但也是具有挑战性的。在这里,我们回顾了最近使用最先进的冷冻电子显微镜(cryo-EM)确定小鼠 Piezo1 的三叶形、螺旋桨形结构的重大突破,并从功能上剖析了定义其离子渗透和机械转导特性的分子基础,这为阐明其寡聚状态和孔形成区域提供了关键见解。我们还讨论了这样一种假设,即复杂的 Piezo 蛋白可以被推断为离散的机械转导和离子传导孔模块,这些模块协调以完成它们在机械感应和转导、离子渗透和选择方面的专门功能。