Suppr超能文献

岛叶-杏仁中央回路指导味觉强化选择行为。

An Insula-Central Amygdala Circuit for Guiding Tastant-Reinforced Choice Behavior.

机构信息

Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724.

Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, the Netherlands, and.

出版信息

J Neurosci. 2018 Feb 7;38(6):1418-1429. doi: 10.1523/JNEUROSCI.1773-17.2017. Epub 2018 Jan 5.

Abstract

For animals to survive, they must reliably predict during foraging which substances are suitable for consumption. Despite extensive study, the neural circuit mechanisms underlying such adaptive behavior remain poorly understood. Here, using a tastant (sucrose/quinine)-reinforced "go/no-go" task in male and female mice, we examined the anatomical and functional connectivity of the circuit linking the insular cortex (IC) to the central amygdala (CeA) and the role of this circuit in the establishment of appropriate behavioral responses. Using anatomic tracing approaches combined with optogenetics-assisted circuit mapping, we found that the gustatory region of the IC sends direct excitatory projections to the lateral division of the CeA (CeL), making monosynaptic excitatory connections with distinct populations of CeL neurons. Specific inhibition of neurotransmitter release from the CeL-projecting IC neurons prevented mice from acquiring the "no-go" response, and impaired the "go" responses in the go/no-go task. Furthermore, selective activation of the IC-CeL pathway with optogenetics drove unconditioned lick suppression in thirsty animals, induced aversive responses, and was sufficient to instruct conditioned action suppression in response to a cue predicting the optogenetic activation. These results indicate that activities in the IC-CeL circuit are critical for establishing taste-reinforced behavioral responses, including avoidance responses to an aversive tastant, and are sufficient to drive learning of anticipatory avoidance. Our findings suggest that the IC-CeL circuit plays an important role in guiding appropriate choices during foraging. An animal's ability to predict which substances are suitable for consumption and then produce an appropriate action to those substances is critical for survival. Here we found that activity in the circuit that links the insular cortex (IC) to the central amygdala (CeA) is necessary for establishing appropriate behavioral responses to taste-predicting cues. This neural circuit seems to be particularly tuned to avoid an unpleasant tastant, and is also sufficient to drive learning of such avoidance responses. These results suggest that the IC-CeA circuit is critical for generating appropriate behavioral responses during foraging when facing different choices.

摘要

为了生存,动物必须在觅食过程中可靠地预测哪些物质适合食用。尽管已经进行了广泛的研究,但支持这种适应性行为的神经回路机制仍知之甚少。在这里,我们使用味觉(蔗糖/奎宁)强化的“是/否”任务,在雄性和雌性小鼠中研究了将岛叶皮层(IC)与中央杏仁核(CeA)连接的回路的解剖和功能连接,以及该回路在建立适当行为反应中的作用。我们使用结合了光遗传学辅助电路映射的解剖追踪方法,发现 IC 的味觉区域直接向 CeA 的外侧部分(CeL)发出兴奋性投射,与 CeL 神经元的不同群体形成单突触兴奋性连接。从投射到 CeL 的 IC 神经元中特异性抑制神经递质释放可防止小鼠获得“否”反应,并损害了“是/否”任务中的“是”反应。此外,光遗传学选择性激活 IC-CeL 通路可驱动口渴动物的非条件性舔舐抑制,诱导厌恶反应,并且足以指导对预测光遗传学激活的线索的条件性行动抑制。这些结果表明,IC-CeL 回路的活动对于建立味觉强化的行为反应至关重要,包括对厌恶味觉的回避反应,并且足以驱动预期回避的学习。我们的研究结果表明,IC-CeL 回路在指导觅食过程中的适当选择中起着重要作用。动物预测哪些物质适合食用然后对这些物质做出适当反应的能力对生存至关重要。在这里,我们发现连接岛叶皮层(IC)和中央杏仁核(CeA)的回路的活动对于建立对味觉预测线索的适当行为反应是必要的。这个神经回路似乎特别适合避免不愉快的味觉,并且足以驱动这种回避反应的学习。这些结果表明,在觅食时面对不同的选择,IC-CeA 回路对于产生适当的行为反应至关重要。

相似文献

1
An Insula-Central Amygdala Circuit for Guiding Tastant-Reinforced Choice Behavior.
J Neurosci. 2018 Feb 7;38(6):1418-1429. doi: 10.1523/JNEUROSCI.1773-17.2017. Epub 2018 Jan 5.
2
The Insula Cortex Contacts Distinct Output Streams of the Central Amygdala.
J Neurosci. 2020 Nov 11;40(46):8870-8882. doi: 10.1523/JNEUROSCI.0567-20.2020. Epub 2020 Oct 13.
3
A Central Amygdala-Globus Pallidus Circuit Conveys Unconditioned Stimulus-Related Information and Controls Fear Learning.
J Neurosci. 2020 Nov 18;40(47):9043-9054. doi: 10.1523/JNEUROSCI.2090-20.2020. Epub 2020 Oct 16.
4
Central Amygdala Somatostatin Neurons Gate Passive and Active Defensive Behaviors.
J Neurosci. 2016 Jun 15;36(24):6488-96. doi: 10.1523/JNEUROSCI.4419-15.2016.
5
The paraventricular thalamus controls a central amygdala fear circuit.
Nature. 2015 Mar 26;519(7544):455-9. doi: 10.1038/nature13978. Epub 2015 Jan 19.
6
Activity of Insula to Basolateral Amygdala Projecting Neurons is Necessary and Sufficient for Taste Valence Representation.
J Neurosci. 2019 Nov 20;39(47):9369-9382. doi: 10.1523/JNEUROSCI.0752-19.2019. Epub 2019 Oct 9.
8
Wiring Specificity and Synaptic Diversity in the Mouse Lateral Central Amygdala.
J Neurosci. 2016 Apr 20;36(16):4549-63. doi: 10.1523/JNEUROSCI.3309-15.2016.
9
Licking-induced synchrony in the taste-reward circuit improves cue discrimination during learning.
J Neurosci. 2010 Jan 6;30(1):287-303. doi: 10.1523/JNEUROSCI.0855-09.2010.
10
Optogenetic study of the projections from the bed nucleus of the stria terminalis to the central amygdala.
J Neurophysiol. 2015 Nov;114(5):2903-11. doi: 10.1152/jn.00677.2015. Epub 2015 Sep 23.

引用本文的文献

1
Licking microstructure behavior classifies a spectrum of emotional states in mice.
Front Syst Neurosci. 2025 Aug 13;19:1623084. doi: 10.3389/fnsys.2025.1623084. eCollection 2025.
2
Integration of Glucagon-Like Peptide 1 Receptor Actions Through the Central Amygdala.
Endocrinology. 2025 Feb 5;166(3). doi: 10.1210/endocr/bqaf019.
3
Contribution of Rat Insular Cortex to Stimulus-Guided Action.
J Neurosci. 2025 Mar 26;45(13):e1923242025. doi: 10.1523/JNEUROSCI.1923-24.2025.
4
Retrieval of an Ethanol-Conditioned Taste Aversion Promotes GABAergic Plasticity in the Anterior Insular Cortex.
J Neurosci. 2025 Feb 26;45(9):e0525242024. doi: 10.1523/JNEUROSCI.0525-24.2024.
5
6
Generation and Characterization of a Novel Cre Rat Model.
J Neurosci. 2024 Aug 7;44(32):e0528242024. doi: 10.1523/JNEUROSCI.0528-24.2024.
7
The Insular Cortex: An Interface Between Sensation, Emotion and Cognition.
Neurosci Bull. 2024 Nov;40(11):1763-1773. doi: 10.1007/s12264-024-01211-4. Epub 2024 May 9.
8
Encoding and context-dependent control of reward consumption within the central nucleus of the amygdala.
iScience. 2024 Apr 1;27(5):109652. doi: 10.1016/j.isci.2024.109652. eCollection 2024 May 17.
9
Recruitment of hippocampal and thalamic pathways to the central amygdala in the control of feeding behavior under novelty.
Brain Struct Funct. 2024 Jun;229(5):1179-1191. doi: 10.1007/s00429-024-02791-7. Epub 2024 Apr 16.

本文引用的文献

1
The central amygdala controls learning in the lateral amygdala.
Nat Neurosci. 2017 Dec;20(12):1680-1685. doi: 10.1038/s41593-017-0009-9. Epub 2017 Oct 23.
2
Central amygdala circuits modulate food consumption through a positive-valence mechanism.
Nat Neurosci. 2017 Oct;20(10):1384-1394. doi: 10.1038/nn.4623. Epub 2017 Aug 21.
3
Homeostatic circuits selectively gate food cue responses in insular cortex.
Nature. 2017 Jun 29;546(7660):611-616. doi: 10.1038/nature22375. Epub 2017 Jun 14.
4
Basolateral to Central Amygdala Neural Circuits for Appetitive Behaviors.
Neuron. 2017 Mar 22;93(6):1464-1479.e5. doi: 10.1016/j.neuron.2017.02.034.
5
A competitive inhibitory circuit for selection of active and passive fear responses.
Nature. 2017 Feb 2;542(7639):96-100. doi: 10.1038/nature21047. Epub 2017 Jan 25.
6
Processing of Intraoral Olfactory and Gustatory Signals in the Gustatory Cortex of Awake Rats.
J Neurosci. 2017 Jan 11;37(2):244-257. doi: 10.1523/JNEUROSCI.1926-16.2016.
8
A basal ganglia circuit for evaluating action outcomes.
Nature. 2016 Nov 10;539(7628):289-293. doi: 10.1038/nature19845. Epub 2016 Sep 21.
9
Associative learning changes cross-modal representations in the gustatory cortex.
Elife. 2016 Aug 30;5:e16420. doi: 10.7554/eLife.16420.
10
Central Amygdala Somatostatin Neurons Gate Passive and Active Defensive Behaviors.
J Neurosci. 2016 Jun 15;36(24):6488-96. doi: 10.1523/JNEUROSCI.4419-15.2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验