Suppr超能文献

光化学控制蛋白质精氨酸脱亚氨酶(PAD)活性。

Photochemical Control of Protein Arginine Deiminase (PAD) Activity.

机构信息

Department of Biochemistry and Molecular Pharmacology , University of Massachusetts Medical School , 364 Plantation Street , Worcester , Massachusetts 01605 , United States.

Program in Chemical Biology , University of Massachusetts Medical School , 364 Plantation Street , Worcester , Massachusetts 01605 , United States.

出版信息

ACS Chem Biol. 2018 Apr 20;13(4):1057-1065. doi: 10.1021/acschembio.8b00053. Epub 2018 Mar 16.

Abstract

Protein arginine deiminases (PADs) play an important role in the pathogenesis of various diseases, including rheumatoid arthritis, multiple sclerosis, lupus, ulcerative colitis, and breast cancer. Therefore, the development of PAD inhibitors has drawn significant research interest in recent years. Herein, we describe the development of the first photoswitchable PAD inhibitors. These compounds possess an azobenzene photoswitch to optically control PAD activity. Screening of a series of inhibitors structurally similar to BB-Cl-amidine afforded compounds 1 and 2 as the most promising candidates for the light-controlled inhibition of PAD2; the cis isomer of 1 is 10-fold more potent than its trans isomer, whereas the trans isomer of 2 is 45-fold more potent than the corresponding cis isomer. The altered inhibitory potency upon photoisomerization has been confirmed in a competitive activity-based protein profiling (ABPP) assay. Further investigations indicate that the trans isomer of 2 is an irreversible inhibitor, whereas the cis isomer acts as a competitive inhibitor. In cells, the trans isomer of compound 1 is completely inactive, whereas the cis isomer inhibits histone H3-citrullination in a dose-dependent manner. Taken together, 1 serves as the foundation for developing photopharmaceuticals that can be activated at the desired tissue, using light, to treat diseases where PAD activity is dysregulated.

摘要

蛋白质精氨酸脱亚氨酶(PADs)在多种疾病的发病机制中发挥着重要作用,包括类风湿性关节炎、多发性硬化症、狼疮、溃疡性结肠炎和乳腺癌。因此,近年来,PAD 抑制剂的开发引起了广泛的研究兴趣。在此,我们描述了第一种光可切换 PAD 抑制剂的开发。这些化合物具有一个偶氮苯光开关,可光学控制 PAD 活性。对一系列结构类似于 BB-Cl-脒的抑制剂进行筛选,得到了化合物 1 和 2,它们是光控抑制 PAD2 的最有前途的候选物;1 的顺式异构体比其反式异构体强 10 倍,而 2 的反式异构体比相应的顺式异构体强 45 倍。光异构化引起的抑制效力变化已在竞争性基于活性的蛋白质谱分析(ABPP)测定中得到证实。进一步的研究表明,2 的反式异构体是一种不可逆抑制剂,而顺式异构体则作为竞争性抑制剂起作用。在细胞中,化合物 1 的反式异构体完全没有活性,而顺式异构体则以剂量依赖的方式抑制组蛋白 H3 瓜氨酸化。综上所述,1 为开发光药物奠定了基础,这些光药物可以在需要的组织中用光激活,以治疗 PAD 活性失调的疾病。

相似文献

1
Photochemical Control of Protein Arginine Deiminase (PAD) Activity.
ACS Chem Biol. 2018 Apr 20;13(4):1057-1065. doi: 10.1021/acschembio.8b00053. Epub 2018 Mar 16.
2
Protein Arginine Deiminases (PADs): Biochemistry and Chemical Biology of Protein Citrullination.
Acc Chem Res. 2019 Mar 19;52(3):818-832. doi: 10.1021/acs.accounts.9b00024. Epub 2019 Mar 7.
3
Discovery of Novel Potential Reversible Peptidyl Arginine Deiminase Inhibitor.
Int J Mol Sci. 2019 May 2;20(9):2174. doi: 10.3390/ijms20092174.
4
Peptidylarginine deiminase (PAD): A promising target for chronic diseases treatment.
Int J Biol Macromol. 2024 Oct;278(Pt 3):134576. doi: 10.1016/j.ijbiomac.2024.134576. Epub 2024 Aug 9.
5
Applicability of Small-Molecule Inhibitors in the Study of Peptidyl Arginine Deiminase 2 (PAD2) and PAD4.
Front Immunol. 2021 Oct 19;12:716250. doi: 10.3389/fimmu.2021.716250. eCollection 2021.
7
Synthesis and screening of a haloacetamidine containing library to identify PAD4 selective inhibitors.
ACS Chem Biol. 2012 Jan 20;7(1):160-5. doi: 10.1021/cb200258q. Epub 2011 Oct 21.
8
Development of a Selective Inhibitor of Protein Arginine Deiminase 2.
J Med Chem. 2017 Apr 13;60(7):3198-3211. doi: 10.1021/acs.jmedchem.7b00274. Epub 2017 Mar 31.
10
The Development of Benzimidazole-Based Clickable Probes for the Efficient Labeling of Cellular Protein Arginine Deiminases (PADs).
ACS Chem Biol. 2018 Mar 16;13(3):712-722. doi: 10.1021/acschembio.7b00957. Epub 2018 Feb 1.

引用本文的文献

2
Recent Progress in Regulating the Activity of Enzymes with Photoswitchable Inhibitors.
Molecules. 2024 Sep 24;29(19):4523. doi: 10.3390/molecules29194523.
3
Structure-Activity Relationship of PAD4 Inhibitors and Their Role in Tumor Immunotherapy.
Pharmaceutics. 2024 Feb 28;16(3):335. doi: 10.3390/pharmaceutics16030335.
4
Spatiotemporally Precise Optical Manipulation of Intracellular Molecular Activities.
Adv Sci (Weinh). 2024 Apr;11(13):e2307342. doi: 10.1002/advs.202307342. Epub 2024 Jan 26.
5
Development of LB244, an Irreversible STING Antagonist.
J Am Chem Soc. 2023 Sep 20;145(37):20273-20288. doi: 10.1021/jacs.3c03637. Epub 2023 Sep 11.
6
Current insights into the role of citrullination in thrombosis.
Curr Opin Chem Biol. 2023 Aug;75:102313. doi: 10.1016/j.cbpa.2023.102313. Epub 2023 May 4.
7
Real-time precision opto-control of chemical processes in live cells.
Nat Commun. 2022 Jul 27;13(1):4343. doi: 10.1038/s41467-022-32071-z.
8
Targeted Cancer Therapy Using Compounds Activated by Light.
Cancers (Basel). 2021 Jun 29;13(13):3237. doi: 10.3390/cancers13133237.
9
Chemical biology of protein citrullination by the protein A arginine deiminases.
Curr Opin Chem Biol. 2021 Aug;63:19-27. doi: 10.1016/j.cbpa.2021.01.010. Epub 2021 Mar 4.
10
Site-specific incorporation of citrulline into proteins in mammalian cells.
Nat Commun. 2021 Jan 4;12(1):45. doi: 10.1038/s41467-020-20279-w.

本文引用的文献

1
The Development of Benzimidazole-Based Clickable Probes for the Efficient Labeling of Cellular Protein Arginine Deiminases (PADs).
ACS Chem Biol. 2018 Mar 16;13(3):712-722. doi: 10.1021/acschembio.7b00957. Epub 2018 Feb 1.
2
Photocontrol of Antibacterial Activity: Shifting from UV to Red Light Activation.
J Am Chem Soc. 2017 Dec 13;139(49):17979-17986. doi: 10.1021/jacs.7b09281. Epub 2017 Nov 28.
3
Citrullination/Methylation Crosstalk on Histone H3 Regulates ER-Target Gene Transcription.
ACS Chem Biol. 2017 Jun 16;12(6):1691-1702. doi: 10.1021/acschembio.7b00241. Epub 2017 May 9.
4
Optical control of AMPA receptors using a photoswitchable quinoxaline-2,3-dione antagonist.
Chem Sci. 2017 Jan 1;8(1):611-615. doi: 10.1039/c6sc01621a. Epub 2016 Aug 24.
5
Development of a Selective Inhibitor of Protein Arginine Deiminase 2.
J Med Chem. 2017 Apr 13;60(7):3198-3211. doi: 10.1021/acs.jmedchem.7b00274. Epub 2017 Mar 31.
7
Citrullination-acetylation interplay guides E2F-1 activity during the inflammatory response.
Sci Adv. 2016 Feb 5;2(2):e1501257. doi: 10.1126/sciadv.1501257. eCollection 2016 Feb.
8
Protein Arginine Methylation and Citrullination in Epigenetic Regulation.
ACS Chem Biol. 2016 Mar 18;11(3):654-68. doi: 10.1021/acschembio.5b00942. Epub 2015 Dec 31.
9
Optical Control of Insulin Secretion Using an Incretin Switch.
Angew Chem Int Ed Engl. 2015 Dec 14;54(51):15565-9. doi: 10.1002/anie.201506384. Epub 2015 Nov 2.
10
Light-Controlled Histone Deacetylase (HDAC) Inhibitors: Towards Photopharmacological Chemotherapy.
Chemistry. 2015 Nov 9;21(46):16517-16524. doi: 10.1002/chem.201502809. Epub 2015 Sep 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验