Suppr超能文献

囊性纤维化中的离子通道调节剂。

Ion Channel Modulators in Cystic Fibrosis.

机构信息

Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina, Chapel Hill, NC; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC.

Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute of Health, Berlin, Germany; Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research, University of Heidelberg, Heidelberg, Germany.

出版信息

Chest. 2018 Aug;154(2):383-393. doi: 10.1016/j.chest.2018.04.036. Epub 2018 May 8.

Abstract

Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene and remains one of the most common life-shortening genetic diseases affecting the lung and other organs. CFTR functions as a cyclic adenosine monophosphate-dependent anion channel that transports chloride and bicarbonate across epithelial surfaces, and disruption of these ion transport processes plays a central role in the pathogenesis of CF. These findings provided the rationale for pharmacologic modulation of ion transport, either by targeting mutant CFTR or alternative ion channels that can compensate for CFTR dysfunction, as a promising therapeutic approach. High-throughput screening has supported the development of CFTR modulator compounds. CFTR correctors are designed to improve defective protein processing, trafficking, and cell surface expression, whereas potentiators increase the activity of mutant CFTR at the cell surface. The approval of the first potentiator ivacaftor for the treatment of patients with specific CFTR mutations and, more recently, the corrector lumacaftor in combination with ivacaftor for patients homozygous for the common F508del mutation, were major breakthroughs on the path to causal therapies for all patients with CF. The present review focuses on recent developments and remaining challenges of CFTR-directed therapies, as well as modulators of other ion channels such as alternative chloride channels and the epithelial sodium channel as additional targets in CF lung disease. We further discuss how patient-derived precision medicine models may aid the translation of emerging next-generation ion channel modulators from the laboratory to the clinic and tailor their use for optimal therapeutic benefits in individual patients with CF.

摘要

囊性纤维化(CF)是由囊性纤维化跨膜电导调节因子(CFTR)基因突变引起的,仍然是最常见的缩短寿命的遗传疾病之一,影响肺部和其他器官。CFTR 作为一种环磷酸腺苷(cAMP)依赖性阴离子通道发挥作用,可在上皮表面转运氯离子和碳酸氢根离子,这些离子转运过程的破坏在 CF 的发病机制中起着核心作用。这些发现为通过靶向突变 CFTR 或可补偿 CFTR 功能障碍的替代离子通道来调节离子转运提供了药理学治疗的依据,这是一种很有前途的治疗方法。高通量筛选支持了 CFTR 调节剂化合物的开发。CFTR 校正剂旨在改善缺陷蛋白的加工、运输和细胞表面表达,而 CFTR 增强剂则增加细胞表面突变 CFTR 的活性。第一种 CFTR 增强剂 ivacaftor 被批准用于治疗特定 CFTR 突变患者,最近,CFTR 校正剂 lumacaftor 与 ivacaftor 联合用于纯合 F508del 常见突变患者,这是为所有 CF 患者提供因果治疗的道路上的重大突破。本综述重点介绍了 CFTR 靶向治疗的最新进展和仍然存在的挑战,以及其他离子通道调节剂,如替代氯离子通道和上皮钠通道,作为 CF 肺部疾病的额外靶点。我们进一步讨论了如何利用患者来源的精准医学模型将新兴的下一代离子通道调节剂从实验室转化为临床,并根据每个 CF 患者的最佳治疗效果来调整它们的使用。

相似文献

1
Ion Channel Modulators in Cystic Fibrosis.
Chest. 2018 Aug;154(2):383-393. doi: 10.1016/j.chest.2018.04.036. Epub 2018 May 8.
2
Lumacaftor and ivacaftor in the management of patients with cystic fibrosis: current evidence and future prospects.
Ther Adv Respir Dis. 2015 Dec;9(6):313-26. doi: 10.1177/1753465815601934. Epub 2015 Sep 28.
3
4
Correctors (specific therapies for class II CFTR mutations) for cystic fibrosis.
Cochrane Database Syst Rev. 2018 Aug 2;8(8):CD010966. doi: 10.1002/14651858.CD010966.pub2.
6
Cystic fibrosis transmembrane conductance regulator modulators: precision medicine in cystic fibrosis.
Curr Opin Pediatr. 2018 Jun;30(3):372-377. doi: 10.1097/MOP.0000000000000627.
7
F508del-cystic fibrosis transmembrane regulator correctors for treatment of cystic fibrosis: a patent review.
Expert Opin Ther Pat. 2015;25(9):991-1002. doi: 10.1517/13543776.2015.1045878. Epub 2015 May 15.
8
In utero and postnatal ivacaftor/lumacaftor therapy rescues multiorgan disease in CFTR-F508del ferrets.
JCI Insight. 2024 Apr 22;9(8):e157229. doi: 10.1172/jci.insight.157229.
9
Lumacaftor alone and combined with ivacaftor: preclinical and clinical trial experience of F508del CFTR correction.
Expert Rev Respir Med. 2016;10(1):5-17. doi: 10.1586/17476348.2016.1122527. Epub 2015 Dec 9.
10
Entering the era of highly effective modulator therapies.
Pediatr Pulmonol. 2021 Feb;56 Suppl 1:S79-S89. doi: 10.1002/ppul.24968.

引用本文的文献

1
Organoid-on-a-chip (OrgOC): Advancing cystic fibrosis research.
Mater Today Bio. 2025 Jul 28;34:102148. doi: 10.1016/j.mtbio.2025.102148. eCollection 2025 Oct.
2
Acute Pericarditis in an Adult with Cystic Fibrosis: A Case Report and Literature Review.
Eur J Case Rep Intern Med. 2025 May 13;12(6):005373. doi: 10.12890/2025_005373. eCollection 2025.
3
4
Highly Effective Modulator Therapy: Implications for the Microbial Landscape in Cystic Fibrosis.
Int J Mol Sci. 2024 Nov 5;25(22):11865. doi: 10.3390/ijms252211865.
5
TRPV4 Channel Modulators as Potential Drug Candidates for Cystic Fibrosis.
Int J Mol Sci. 2024 Sep 30;25(19):10551. doi: 10.3390/ijms251910551.
7
TMEM16 proteins: Ca‑activated chloride channels and phospholipid scramblases as potential drug targets (Review).
Int J Mol Med. 2024 Oct;54(4). doi: 10.3892/ijmm.2024.5405. Epub 2024 Aug 2.
10
Recommended Tool Compounds for Modifying the Cystic Fibrosis Transmembrane Conductance Regulator Channel Variants.
ACS Pharmacol Transl Sci. 2024 Mar 14;7(4):933-950. doi: 10.1021/acsptsci.3c00362. eCollection 2024 Apr 12.

本文引用的文献

2
Nasospheroids permit measurements of CFTR-dependent fluid transport.
JCI Insight. 2017 Nov 16;2(22). doi: 10.1172/jci.insight.95734.
3
The therapeutic potential of CFTR modulators for COPD and other airway diseases.
Curr Opin Pharmacol. 2017 Jun;34:132-139. doi: 10.1016/j.coph.2017.09.013. Epub 2017 Nov 10.
4
CFTR Modulator Therapy for Cystic Fibrosis.
N Engl J Med. 2017 Nov 23;377(21):2085-2088. doi: 10.1056/NEJMe1712335. Epub 2017 Nov 3.
5
Tezacaftor-Ivacaftor in Patients with Cystic Fibrosis Homozygous for Phe508del.
N Engl J Med. 2017 Nov 23;377(21):2013-2023. doi: 10.1056/NEJMoa1709846. Epub 2017 Nov 3.
6
Tezacaftor-Ivacaftor in Residual-Function Heterozygotes with Cystic Fibrosis.
N Engl J Med. 2017 Nov 23;377(21):2024-2035. doi: 10.1056/NEJMoa1709847. Epub 2017 Nov 3.
7
A common mechanism for CFTR potentiators.
J Gen Physiol. 2017 Dec 4;149(12):1105-1118. doi: 10.1085/jgp.201711886. Epub 2017 Oct 27.
8
Bypassing CFTR dysfunction in cystic fibrosis with alternative pathways for anion transport.
Curr Opin Pharmacol. 2017 Jun;34:91-97. doi: 10.1016/j.coph.2017.10.002. Epub 2017 Oct 21.
9
10
Recent progress in translational cystic fibrosis research using precision medicine strategies.
J Cyst Fibros. 2018 Mar;17(2S):S52-S60. doi: 10.1016/j.jcf.2017.09.005. Epub 2017 Oct 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验