Suppr超能文献

氮信号及其在植物中的利用的动态调控网络的时间转录逻辑。

Temporal transcriptional logic of dynamic regulatory networks underlying nitrogen signaling and use in plants.

机构信息

Horticulture and Landscape Architecture/Center for Plant Biology, Purdue University, West Lafayette, IN 47907.

Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801.

出版信息

Proc Natl Acad Sci U S A. 2018 Jun 19;115(25):6494-6499. doi: 10.1073/pnas.1721487115. Epub 2018 May 16.

Abstract

This study exploits time, the relatively unexplored fourth dimension of gene regulatory networks (GRNs), to learn the temporal transcriptional logic underlying dynamic nitrogen (N) signaling in plants. Our "just-in-time" analysis of time-series transcriptome data uncovered a temporal cascade of elements underlying dynamic N signaling. To infer transcription factor (TF)-target edges in a GRN, we applied a time-based machine learning method to 2,174 dynamic N-responsive genes. We experimentally determined a network precision cutoff, using TF-regulated genome-wide targets of three TF hubs (CRF4, SNZ, and CDF1), used to "prune" the network to 155 TFs and 608 targets. This network precision was reconfirmed using genome-wide TF-target regulation data for four additional TFs (TGA1, HHO5/6, and PHL1) not used in network pruning. These higher-confidence edges in the GRN were further filtered by independent TF-target binding data, used to calculate a TF "N-specificity" index. This refined GRN identifies the temporal relationship of known/validated regulators of N signaling (NLP7/8, TGA1/4, NAC4, HRS1, and LBD37/38/39) and 146 additional regulators. Six TFs-CRF4, SNZ, CDF1, HHO5/6, and PHL1-validated herein regulate a significant number of genes in the dynamic N response, targeting 54% of N-uptake/assimilation pathway genes. Phenotypically, inducible overexpression of CRF4 regulates genes resulting in altered biomass, root development, and NO uptake, specifically under low-N conditions. This dynamic N-signaling GRN now provides the temporal "transcriptional logic" for 155 candidate TFs to improve nitrogen use efficiency with potential agricultural applications. Broadly, these time-based approaches can uncover the temporal transcriptional logic for any biological response system in biology, agriculture, or medicine.

摘要

本研究利用时间——基因调控网络(GRNs)中相对未被探索的第四个维度,来学习动态氮(N)信号在植物中所隐含的时间转录逻辑。我们对时间序列转录组数据进行了“即时”分析,揭示了动态 N 信号背后的一系列元素的时间级联。为了在 GRN 中推断转录因子(TF)-靶标边缘,我们应用了一种基于时间的机器学习方法来分析 2174 个动态 N 响应基因。我们使用三个 TF 枢纽(CRF4、SNZ 和 CDF1)的 TF 调节的全基因组靶标,实验确定了网络精度截止值,用于“修剪”网络,将其缩小到 155 个 TF 和 608 个靶标。使用四个额外 TF(TGA1、HHO5/6 和 PHL1)的全基因组 TF-靶标调节数据,对该网络精度进行了重新确认,这些 TF 未用于网络修剪。在 GRN 中,这些更高置信度的边缘进一步通过独立的 TF-靶标结合数据进行过滤,用于计算 TF“N 特异性”指数。经过该细化的 GRN 确定了已知/验证的 N 信号调节剂(NLP7/8、TGA1/4、NAC4、HRS1 和 LBD37/38/39)和 146 个额外调节剂的时间关系。在本文中验证的六个 TF-CRF4、SNZ、CDF1、HHO5/6 和 PHL1 调节动态 N 响应中的大量基因,靶向 54%的 N 吸收/同化途径基因。表型上,诱导过表达 CRF4 调节导致生物量、根系发育和 NO 吸收改变的基因,特别是在低 N 条件下。这个动态的 N 信号 GRN 现在为 155 个候选 TF 提供了时间“转录逻辑”,以提高氮利用效率,具有潜在的农业应用价值。广义而言,这些基于时间的方法可以揭示生物学、农业或医学中任何生物反应系统的时间转录逻辑。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac6a/6016767/701916c3c59a/pnas.1721487115fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验