Suppr超能文献

骨髓增生异常综合征中的免疫失调及其治疗靶点。

Disordered Immune Regulation and its Therapeutic Targeting in Myelodysplastic Syndromes.

机构信息

Boston University School of Medicine, Boston, MA, USA.

Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.

出版信息

Curr Hematol Malig Rep. 2018 Aug;13(4):244-255. doi: 10.1007/s11899-018-0463-9.

Abstract

PURPOSE OF REVIEW

Immune dysregulation is a defining feature of myelodysplastic syndromes (MDS). Recently, several studies have further defined the complex role of immune alterations within MDS. Herein, we will summarize some of these findings and discuss the therapeutic strategies currently in development.

RECENT FINDINGS

Immune alterations in MDS are complex, heterogeneous, and intertwined with clonal hematopoiesis and stromal cell dysfunction. Inflammation in MDS proceeds as a vicious cycle, mediated in large part by secreted factors, which induce cell death and activate innate immune signaling. Therapeutic targeting of this variable immune dysregulation has led to modest responses thus far, but incorporation of the growing repertoire of immunotherapy brings new potential for improved outcomes. The immune milieu is variable across the spectrum of MDS subtypes, with a changing balance of inflammatory and suppressive cellular forces from low- to high-risk disease.

摘要

目的综述

免疫失调是骨髓增生异常综合征(MDS)的一个特征。最近,多项研究进一步明确了 MDS 中免疫改变的复杂作用。在此,我们将总结其中的一些发现,并讨论目前正在开发的治疗策略。

最近的发现

MDS 中的免疫改变复杂且具有异质性,与克隆性造血和基质细胞功能障碍交织在一起。MDS 中的炎症呈恶性循环,很大程度上由分泌因子介导,这些因子诱导细胞死亡并激活先天免疫信号。针对这种可变免疫失调的治疗靶向迄今为止仅取得了适度的反应,但免疫疗法的应用范围不断扩大,为改善预后带来了新的潜力。免疫微环境在 MDS 各亚型中存在差异,从低危疾病到高危疾病,炎症和抑制性细胞力量的平衡不断变化。

相似文献

1
Disordered Immune Regulation and its Therapeutic Targeting in Myelodysplastic Syndromes.
Curr Hematol Malig Rep. 2018 Aug;13(4):244-255. doi: 10.1007/s11899-018-0463-9.
2
Chronic immune response dysregulation in MDS pathogenesis.
Blood. 2018 Oct 11;132(15):1553-1560. doi: 10.1182/blood-2018-03-784116. Epub 2018 Aug 13.
3
Dendritic cells in myelodysplastic syndromes: from pathogenesis to immunotherapy.
Immunotherapy. 2013 Jun;5(6):621-37. doi: 10.2217/imt.13.51.
4
Innate immune pathways and inflammation in hematopoietic aging, clonal hematopoiesis, and MDS.
J Exp Med. 2021 Jul 5;218(7). doi: 10.1084/jem.20201544. Epub 2021 Jun 15.
5
Deregulation of innate immune and inflammatory signaling in myelodysplastic syndromes.
Leukemia. 2015 Jul;29(7):1458-69. doi: 10.1038/leu.2015.69. Epub 2015 Mar 12.
6
Deconstructing innate immune signaling in myelodysplastic syndromes.
Exp Hematol. 2015 Aug;43(8):587-598. doi: 10.1016/j.exphem.2015.05.016. Epub 2015 Jul 2.
8
Bone marrow niche in the myelodysplastic syndromes.
Leuk Res. 2015 Oct;39(10):1020-7. doi: 10.1016/j.leukres.2015.06.017. Epub 2015 Jul 14.
9
The inflammatory microenvironment in MDS.
Cell Mol Life Sci. 2015 May;72(10):1959-66. doi: 10.1007/s00018-015-1846-x. Epub 2015 Feb 8.
10
Immunosuppressive therapy in myelodysplastic syndromes: a borrowed therapy in search of the right place.
Expert Rev Hematol. 2018 Sep;11(9):715-726. doi: 10.1080/17474086.2018.1503049. Epub 2018 Aug 22.

引用本文的文献

2
Pathogenesis and inflammaging in myelodysplastic syndrome.
Haematologica. 2025 Feb 1;110(2):283-299. doi: 10.3324/haematol.2023.284944.
3
Prognostic impact of the bone marrow tumor microenvironment, HLA-I and HLA-Ib expression in MDS and CMML progression to sAML.
Oncoimmunology. 2024 Mar 6;13(1):2323212. doi: 10.1080/2162402X.2024.2323212. eCollection 2024.
5
High PD-L1 expression is associated with unfavorable clinical features in myelodysplastic neoplasms.
Hematol Transfus Cell Ther. 2024 Apr-Jun;46(2):146-152. doi: 10.1016/j.htct.2023.05.002. Epub 2023 Jun 5.
8
Myeloid-Derived Suppressor Cells: New Insights into the Pathogenesis and Therapy of MDS.
J Clin Med. 2022 Aug 21;11(16):4908. doi: 10.3390/jcm11164908.
10
Emerging immuno-oncology targets in Myelodysplastic Syndromes (MDS).
Curr Probl Cancer. 2022 Feb;46(1):100824. doi: 10.1016/j.currproblcancer.2021.100824. Epub 2021 Dec 26.

本文引用的文献

1
CD123 CAR T cells for the treatment of myelodysplastic syndrome.
Exp Hematol. 2019 Jun;74:52-63.e3. doi: 10.1016/j.exphem.2019.05.002. Epub 2019 May 25.
2
An Uncoupling of Canonical Phenotypic Markers and Functional Potency of -Expanded Natural Killer Cells.
Front Immunol. 2018 Feb 2;9:150. doi: 10.3389/fimmu.2018.00150. eCollection 2018.
3
Complete Remission with Reduction of High-Risk Clones following Haploidentical NK-Cell Therapy against MDS and AML.
Clin Cancer Res. 2018 Apr 15;24(8):1834-1844. doi: 10.1158/1078-0432.CCR-17-3196. Epub 2018 Feb 14.
4
Chronic innate immune signaling results in ubiquitination of splicing machinery.
Cell Cycle. 2018;17(4):407-409. doi: 10.1080/15384101.2018.1429082. Epub 2018 Apr 3.
5
Age-related inflammatory bone marrow microenvironment induces ineffective erythropoiesis mimicking del(5q) MDS.
Leukemia. 2018 Apr;32(4):1023-1033. doi: 10.1038/leu.2017.326. Epub 2017 Nov 16.
7
Pro-inflammatory proteins S100A9 and tumor necrosis factor-α suppress erythropoietin elaboration in myelodysplastic syndromes.
Haematologica. 2017 Dec;102(12):2015-2020. doi: 10.3324/haematol.2016.158857. Epub 2017 Oct 5.
8
CD56bright NK cells exhibit potent antitumor responses following IL-15 priming.
J Clin Invest. 2017 Nov 1;127(11):4042-4058. doi: 10.1172/JCI90387. Epub 2017 Oct 3.
9
NY-ESO-1 Vaccination in Combination with Decitabine Induces Antigen-Specific T-lymphocyte Responses in Patients with Myelodysplastic Syndrome.
Clin Cancer Res. 2018 Mar 1;24(5):1019-1029. doi: 10.1158/1078-0432.CCR-17-1792. Epub 2017 Sep 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验