Suppr超能文献

分子在全息甲板上的可视化。

Molecular Visualization on the Holodeck.

机构信息

Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA.

Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA.

出版信息

J Mol Biol. 2018 Oct 19;430(21):3982-3996. doi: 10.1016/j.jmb.2018.06.040. Epub 2018 Jun 28.

Abstract

Can virtual reality be useful for visualizing and analyzing molecular structures and three-dimensional (3D) microscopy? Uses we are exploring include studies of drug binding to proteins and the effects of mutations, building accurate atomic models in electron microscopy and x-ray density maps, understanding how immune system cells move using 3D light microscopy, and teaching schoolchildren about biomolecules that are the machinery of life. Virtual reality (VR) offers immersive display with a wide field of view and head tracking for better perception of molecular architectures and uses 6-degree-of-freedom hand controllers for simple manipulation of 3D data. Conventional computer displays with trackpad, mouse and keyboard excel at two-dimensional tasks such as writing and studying research literature, uses for which VR technology is at present far inferior. Adding VR to the conventional computing environment could improve 3D capabilities if new user-interface problems can be solved. We have developed three VR applications: ChimeraX for analyzing molecular structures and electron and light microscopy data, AltPDB for collaborative discussions around atomic models, and Molecular Zoo for teaching young students characteristics of biomolecules. Investigations over three decades have produced an extensive literature evaluating the potential of VR in research and education. Consumer VR headsets are now affordable to researchers and educators, allowing direct tests of whether the technology is valuable in these areas. We survey here advantages and disadvantages of VR for molecular biology in the context of affordable and dramatically more powerful VR and graphics hardware than has been available in the past.

摘要

虚拟现实在可视化和分析分子结构和三维(3D)显微镜方面是否有用?我们正在探索的用途包括研究药物与蛋白质的结合以及突变的影响、在电子显微镜和 X 射线密度图中构建准确的原子模型、了解免疫系统细胞如何使用 3D 光显微镜移动,以及向学童教授生命机器的生物分子。虚拟现实 (VR) 提供沉浸式显示,具有广阔的视野和头部跟踪,可更好地感知分子结构,并使用 6 自由度手控器简单地操作 3D 数据。带有触控板、鼠标和键盘的传统计算机显示器擅长二维任务,例如写作和研究文献,而目前 VR 技术在这些方面远不如传统计算机显示器。如果能够解决新的用户界面问题,将 VR 添加到传统计算环境中可能会提高 3D 能力。我们开发了三个 VR 应用程序:ChimeraX 用于分析分子结构和电子显微镜和光显微镜数据,AltPDB 用于围绕原子模型进行协作讨论,以及 Molecular Zoo 用于向年轻学生教授生物分子的特征。三十多年的研究产生了广泛的文献,评估了 VR 在研究和教育中的潜力。现在,研究人员和教育工作者都可以负担得起消费者 VR 耳机,这使得可以直接测试该技术在这些领域是否有价值。我们在这里调查了在过去可获得的价格合理且功能更强大的 VR 和图形硬件的背景下,VR 对分子生物学的优缺点。

相似文献

1
Molecular Visualization on the Holodeck.
J Mol Biol. 2018 Oct 19;430(21):3982-3996. doi: 10.1016/j.jmb.2018.06.040. Epub 2018 Jun 28.
2
From Virtual Reality to Immersive Analytics in Bioinformatics.
J Integr Bioinform. 2018 Jul 9;15(2):20180043. doi: 10.1515/jib-2018-0043.
3
Journey to the centre of the cell: Virtual reality immersion into scientific data.
Traffic. 2018 Feb;19(2):105-110. doi: 10.1111/tra.12538. Epub 2017 Nov 21.
4
Creating 3D models from Radiologic Images for Virtual Reality Medical Education Modules.
J Med Syst. 2019 May 3;43(6):166. doi: 10.1007/s10916-019-1308-3.
6
[Virtual reality in medicine].
Radiologe. 1995 Sep;35(9):563-8.
7
Using virtual reality for drug discovery: a promising new outlet for novel leads.
Expert Opin Drug Discov. 2018 Dec;13(12):1103-1114. doi: 10.1080/17460441.2018.1546286. Epub 2018 Nov 20.
9
ConfocalVR: Immersive Visualization for Confocal Microscopy.
J Mol Biol. 2018 Oct 19;430(21):4028-4035. doi: 10.1016/j.jmb.2018.06.035. Epub 2018 Jun 24.

引用本文的文献

1
Teicoplanin Nonribosomal Peptide Synthetase Is Unable to Incorporate Alpha-Ketoacid Building Blocks.
Biochemistry. 2025 May 6;64(9):2039-2053. doi: 10.1021/acs.biochem.4c00770. Epub 2025 Apr 11.
2
ColocZStats: a z-stack signal colocalization extension tool for 3D slicer.
Front Physiol. 2024 Sep 4;15:1440099. doi: 10.3389/fphys.2024.1440099. eCollection 2024.
3
Teaching protein structure and function through molecular visualization.
Biochem Mol Biol Educ. 2025 Jan-Feb;53(1):15-20. doi: 10.1002/bmb.21860. Epub 2024 Sep 4.
5
A Concise Review of Biomolecule Visualization.
Curr Issues Mol Biol. 2024 Feb 2;46(2):1318-1334. doi: 10.3390/cimb46020084.
6
A brief history of visualizing membrane systems in molecular dynamics simulations.
Front Bioinform. 2023 May 5;3:1149744. doi: 10.3389/fbinf.2023.1149744. eCollection 2023.
8
Bioinformatics and the Metaverse: Are We Ready?
Front Bioinform. 2022 May 12;2:863676. doi: 10.3389/fbinf.2022.863676. eCollection 2022.
9
New Approach to Accelerated Image Annotation by Leveraging Virtual Reality and Cloud Computing.
Front Bioinform. 2022 Jan 31;1:777101. doi: 10.3389/fbinf.2021.777101. eCollection 2021.
10
Advancing global chemical education through interactive teaching tools.
Chem Sci. 2022 May 11;13(20):5790-5796. doi: 10.1039/d2sc01881k. eCollection 2022 May 25.

本文引用的文献

1
ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps.
Acta Crystallogr D Struct Biol. 2018 Jun 1;74(Pt 6):519-530. doi: 10.1107/S2059798318002425. Epub 2018 Apr 11.
2
Accessible virtual reality of biomolecular structural models using the Autodesk Molecule Viewer.
Nat Methods. 2017 Nov 30;14(12):1122-1123. doi: 10.1038/nmeth.4506.
3
Journey to the centre of the cell: Virtual reality immersion into scientific data.
Traffic. 2018 Feb;19(2):105-110. doi: 10.1111/tra.12538. Epub 2017 Nov 21.
4
RealityConvert: a tool for preparing 3D models of biochemical structures for augmented and virtual reality.
Bioinformatics. 2017 Dec 1;33(23):3816-3818. doi: 10.1093/bioinformatics/btx485.
6
OpenMM 7: Rapid development of high performance algorithms for molecular dynamics.
PLoS Comput Biol. 2017 Jul 26;13(7):e1005659. doi: 10.1371/journal.pcbi.1005659. eCollection 2017 Jul.
7
UCSF ChimeraX: Meeting modern challenges in visualization and analysis.
Protein Sci. 2018 Jan;27(1):14-25. doi: 10.1002/pro.3235. Epub 2017 Sep 6.
8
9
ChemPreview: an augmented reality-based molecular interface.
J Mol Graph Model. 2017 May;73:18-23. doi: 10.1016/j.jmgm.2017.01.019. Epub 2017 Jan 31.
10
Immersive virtual reality in computational chemistry: Applications to the analysis of QM and MM data.
Int J Quantum Chem. 2016 Nov 15;116(22):1731-1746. doi: 10.1002/qua.25207. Epub 2016 Jul 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验