Suppr超能文献

非病毒递送技术在基因组编辑中的应用。

Non-Viral Delivery To Enable Genome Editing.

机构信息

Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; These authors contributed equally.

Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; These authors contributed equally.

出版信息

Trends Biotechnol. 2019 Mar;37(3):281-293. doi: 10.1016/j.tibtech.2018.08.010. Epub 2018 Sep 29.

Abstract

Genome-editing technologies such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENS), and the clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein system have revolutionized biological research. Each biotechnology consists of a DNA-binding protein that can be programmed to recognize and initiate double-strand breaks (DSBs) for site-specific gene modification. These technologies have the potential to be harnessed to cure diseases caused by aberrant gene expression. To be successful therapeutically, their functionality depends on their safe and efficient delivery into the cell nucleus. This review discusses the challenges in the delivery of genome-editing tools, and highlights recent innovations in non-viral delivery that have potential to overcome these limitations and advance the translation of genome editing towards patient care.

摘要

基因组编辑技术,如锌指核酸酶(ZFNs)、转录激活因子样效应物核酸酶(TALENs)和规律成簇间隔短回文重复(CRISPR)相关蛋白系统,已经彻底改变了生物研究。每种生物技术都包含一种 DNA 结合蛋白,该蛋白可以被编程以识别并启动双链断裂(DSBs),从而进行特定基因的修饰。这些技术有可能被用于治疗由异常基因表达引起的疾病。为了在治疗上取得成功,它们的功能取决于其安全有效地递送到细胞核内。这篇综述讨论了基因组编辑工具递送方面的挑战,并强调了最近在非病毒递送上的创新,这些创新有可能克服这些限制,推动基因组编辑向患者护理的转化。

相似文献

1
Non-Viral Delivery To Enable Genome Editing.
Trends Biotechnol. 2019 Mar;37(3):281-293. doi: 10.1016/j.tibtech.2018.08.010. Epub 2018 Sep 29.
2
Non-viral strategies for delivering genome editing enzymes.
Adv Drug Deliv Rev. 2021 Jan;168:99-117. doi: 10.1016/j.addr.2020.09.004. Epub 2020 Sep 12.
3
Gene editing and CRISPR in the clinic: current and future perspectives.
Biosci Rep. 2020 Apr 30;40(4). doi: 10.1042/BSR20200127.
4
Delivery technologies for genome editing.
Nat Rev Drug Discov. 2017 Jun;16(6):387-399. doi: 10.1038/nrd.2016.280. Epub 2017 Mar 24.
5
Therapeutic editing of hepatocyte genome in vivo.
J Hepatol. 2017 Oct;67(4):818-828. doi: 10.1016/j.jhep.2017.05.012. Epub 2017 May 17.
6
Non-viral delivery of genome-editing nucleases for gene therapy.
Gene Ther. 2017 Mar;24(3):144-150. doi: 10.1038/gt.2016.72. Epub 2016 Oct 31.
7
8
Site-Specific Integration of Exogenous Genes Using Genome Editing Technologies in Zebrafish.
Int J Mol Sci. 2016 May 13;17(5):727. doi: 10.3390/ijms17050727.
9
Gene Editing on Center Stage.
Trends Genet. 2018 Aug;34(8):600-611. doi: 10.1016/j.tig.2018.05.004. Epub 2018 Jun 13.
10
[Genome Editing Tools and their Application in Experimental Ophthalmology].
Klin Monbl Augenheilkd. 2017 Mar;234(3):329-334. doi: 10.1055/s-0042-119205. Epub 2017 Jan 23.

引用本文的文献

1
Nanotechnology-based mRNA vaccines.
Nat Rev Methods Primers. 2023;3(1). doi: 10.1038/s43586-023-00246-7. Epub 2023 Aug 17.
2
CRISPR-Cas9 Targeting PCSK9: A Promising Therapeutic Approach for Atherosclerosis.
J Cardiovasc Transl Res. 2025 Apr;18(2):424-441. doi: 10.1007/s12265-024-10587-7. Epub 2025 Jan 13.
3
Revolutionizing Intervertebral Disc Regeneration: Advances and Future Directions in Three-Dimensional Bioprinting of Hydrogel Scaffolds.
Int J Nanomedicine. 2024 Oct 21;19:10661-10684. doi: 10.2147/IJN.S469302. eCollection 2024.
4
Nanomaterials-assisted gene editing and synthetic biology for optimizing the treatment of pulmonary diseases.
J Nanobiotechnology. 2024 Jun 18;22(1):343. doi: 10.1186/s12951-024-02627-w.
5
Glioblastoma Therapy: Past, Present and Future.
Int J Mol Sci. 2024 Feb 21;25(5):2529. doi: 10.3390/ijms25052529.
7
Lipid Nanoparticle-Enabled Intracellular Delivery of Prime Editors.
AAPS J. 2023 Jun 28;25(4):65. doi: 10.1208/s12248-023-00833-2.
8
Carrier strategies boost the application of CRISPR/Cas system in gene therapy.
Exploration (Beijing). 2022 Mar 15;2(2):20210081. doi: 10.1002/EXP.20210081. eCollection 2022 Apr.
10
Current updates of CRISPR/Cas9-mediated genome editing and targeting within tumor cells: an innovative strategy of cancer management.
Cancer Commun (Lond). 2022 Dec;42(12):1257-1287. doi: 10.1002/cac2.12366. Epub 2022 Oct 9.

本文引用的文献

1
Nanoparticle delivery of CRISPR into the brain rescues a mouse model of fragile X syndrome from exaggerated repetitive behaviours.
Nat Biomed Eng. 2018 Jul;2(7):497-507. doi: 10.1038/s41551-018-0252-8. Epub 2018 Jun 25.
3
CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response.
Nat Med. 2018 Jul;24(7):927-930. doi: 10.1038/s41591-018-0049-z. Epub 2018 Jun 11.
4
p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells.
Nat Med. 2018 Jul;24(7):939-946. doi: 10.1038/s41591-018-0050-6. Epub 2018 Jun 11.
6
Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA induces homology-directed DNA repair.
Nat Biomed Eng. 2017;1:889-901. doi: 10.1038/s41551-017-0137-2. Epub 2017 Oct 2.
7
Targeted Delivery of CRISPR/Cas9-Mediated Cancer Gene Therapy via Liposome-Templated Hydrogel Nanoparticles.
Adv Funct Mater. 2017 Dec 8;27(46). doi: 10.1002/adfm.201703036. Epub 2017 Oct 16.
8
Exosome-Liposome Hybrid Nanoparticles Deliver CRISPR/Cas9 System in MSCs.
Adv Sci (Weinh). 2018 Jan 30;5(4):1700611. doi: 10.1002/advs.201700611. eCollection 2018 Apr.
9
Nonviral gene editing via CRISPR/Cas9 delivery by membrane-disruptive and endosomolytic helical polypeptide.
Proc Natl Acad Sci U S A. 2018 May 8;115(19):4903-4908. doi: 10.1073/pnas.1712963115. Epub 2018 Apr 23.
10
Endosomal Size and Membrane Leakiness Influence Proton Sponge-Based Rupture of Endosomal Vesicles.
ACS Nano. 2018 Mar 27;12(3):2332-2345. doi: 10.1021/acsnano.7b07583. Epub 2018 Mar 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验